
WWW.SERVO-DRIVE.CZ

User manual

2022

STEPPER MOTOR CONTROLLERS

SMSD-1.5Modbus ver.3

SMSD-4.2Modbus

SMSD-8.0Modbus

SMSD-1.5Mus

user manual

2

Precautions and remarks in the text:

Attention
Different types of danger, which may result in damage to property or injuries.

Information
Recommendations, advices or reference to another documentation.

Highlights and formatting of text fragments:

� Label or mark of choice

1) Some actions should be done in a sequential order

² Common enumerations

Manufacturer information

SERVO.DRIVE GmbH adheres to the line of continuous development and reserves the right to make

changes and improvements in the design and software of the product without prior notice.

The information contained in this manual is subject to change at any time and without prior notice.

3

Contents

1. The intent of the controller 5

2. Technical specifications 10

3. Operation sequence .. 12

3.1. The principle of operation of relay-contact circuits and ladder diagrams in the controller 12

3.2. Differences between logic of real relay-contact circuits and ladder diagrams in the controller

14

3.3. Operands. .. 15

3.4. Graphic symbols of control instructions at a ladder diagram ... 16

3.5. Convert relay contact circuits (LD) to mnemonic code (IL) .. 19

4. Controller functionality . .. 22

4.1. Operands overview 22

4.2. Addressing and functions of inputs [X] and outputs [Y] . .. 23

4.3. $GGUHVVLQJ�DQG�IXQFWLRQ�RI�LQWHUQDO�UHOD\V�>F@.. 24

4.4. $GGUHVVLQJ�DQG�IXQFWLRQ�RI�WLPHUV�>L@ . .. 25

4.5. Addressing and function of counters [C] . .. 26

4.6. Addressing and function of registers [D], [A], [B] 28

4.7. Index registers [A], [B] 30

4.8. Pointers [P], [I]. .. 31

5. Error codes 33

6. Basic instructions . .. 38

7. Application instructions 55

8. Stepper motor driver control . .. 98

9. Communication parameters . .. 109

Change communication settings for RS-485 109

Modbus Protocol . .. 109

10. Setting the real time clock . .. 112

11. A user program - loading to and reading from the controller .. 113

12. Speed control mode . .. 120

13. Step/Dir pulse position control mode 122

14. User program control mode . .. 124

Appendix A. Registers of the controller.. 125

RS-485 interface communication parameters . .. 125

Clock setting 125

Additional 126

Working with ROM ... 126

ROM reading sector ... 127

ROM writing sector ... 128

Errors .. 130

Access to program operands 131

Discrete outputs . .. 131

State of discrete physical inputs .. 131

SMSD-1.5Mus

user manual

4

Discrete inputs . .. 132

General purpose data registers D192...D255 . .. 132

General purpose data registers D256...D319 . .. 132

Non-volatile data registers D320...D327 . .. 132

Non-volatile data registers D328...335 . .. 132

Hardware counters ... 133

Analog-to-digital converters 133

Hardware and software versions .. 133

Stepper motor control. ... 133

Appendix B ± List of instructions . .. 136

Basic instructions ... 136

Instructions for loops, transitions, subprogram ... 137

Interruptions 137

Data transfer and comparison 137

Arithmetic operations (integers) .. 138

Shift operations 140

Data processing 141

Floating point operations . .. 141

Time and PWM. ... 142

Contact type logical operations . .. 142

Contact type comparison operations .. 143

Stepper motor control. ... 144

Appendix C. Examples of user programs .. 146

Example 1. Usage of RUN command .. 146

Example 2. Usage of commands MOVE, GOTO, GOHOME 146

Example 3. Usage of commands GOUNTIL_SLOWSTOP and RELEASE 148

$SSHQGL[�'��&RGH�RI�WKH�VHUYLFH�SURJUDP�³6WHSSHU�0RWRU�6SHHG�&RQWURO´ 150

Appendix E. The lifetime of the fronts of the operands M and Y 157

Example 1 . .. 157

Example 2 . .. 158

5

1. The intent of the controller

The controller is designed to operate with stepper motors. The device can be controlled by PLC

(via RS-485 Modbus ASCII/RTU) or can operate in a standalone mode according to the preset executing

program.

The controller provides fullstep operating or microstepping up to 1/256. The controller

provides smooth motion with a low level of vibrations and a high accuracy of positioning.

The controller provides the next control modes:

² Program control mode ± standalone operation according to the preset executing

algorithm or a real-time control from a PC or PLC by commands given via Modbus

protocol.

² Analog speed control ± motor rotation speed is adjusted by the potentiometer at the

front side of the controller.

² STEP/DIR control mode ± control the motor position by pulse logic signals.

The controller has 8 logic inputs and 10 outputs (2 of these outputs are high voltage). The state

of I/O can be read or set from a user executing program or directly by Modbus commands. Internal

executing program can be downloaded from and upload to the controller through USB or RS-485.

We provide software for controller adjusting, assembling or editing of executing programs and

IRU�XSORDGLQJ�RI�WKH�H[HFXWLQJ�SURJUDP�WR�WKH�FRQWUROOHU¶V�PHPRU\�

The controller has overheating protection.

Fig. 1 ± Purpose of control elements

SMSD-1.5Mus

user manual

6

Fig. 2a ± Terminal assignment ± driver control mode

7

Fig. 3b ± Terminal assignment ± speed control mode

SMSD-1.5Mus

user manual

8

Fig. 4c ± Terminal assignment ± user program control mode

9

The Fig. 1 shows the front panel of the controller with control and indication elements. The

PWR indicator indicates the presence of supply voltage. RUN indicates the current state of the con-

troller (RUN or STOP). In PROG mode (execution of a user program) and SPD mode (speed control),

the active state of RUN indicator indicates the execution of the program, the inactive state indicates

stop state. In DRV mode (Step/Dir mode) the inactive RUN state indicates the ability to set driver pa-

rameters by the control elements of the controller. The active RUN state indicates entry to the operat-

ing mode, parameter changes are disabled. The ability to switch between the PROG / SPD / DRV

modes is disabled in the RUN state. In the STOP state switching the control mode can be done by the

MODE button. ERR indicates existing of errors. BAT indicates low battery inside the unit. USB and

RS485 indicate the process of a Modbus frame transmitting via USB and

RS-485. In PROG and SPD mode the LEDs IN0 ... IN7 indicate the presence of a high level of a logic

signal at the corresponding input. The active states of the OUT0 ... OUT11 indicators indicate the

open state of the transistor output (seeFig. 5 ± Fig. 8). In DRV mode (Step/Dir mode) the LEDs of the

inputs IN0 ... IN7 indicate misrostepping setting, the outputs OUT0 ... OUT3 display the operating

current setting, OUT4 ... OUT7 display the holding current setting.

COM

IN

Fig. 5 ± Inputs IN0 and IN1

COM

IN

Fig. 6 ± Inputs IN2 ± IN7

OUT

COM

Fig. 7 ± Outputs OUT0 ± OUT7

287¶

OUT

Fig. 8 ± Outputs OUT10 and OUT11

The position of potentiometers 0, 1, 2 (SPEED) are converted into 12-bit values, which are ac-

cessible for the further use in an executing program and can be read by Modbus command. In the SPD

(speed control) mode potentiometer 2 (SPEED) is used to set the rotation speed, potentiometer 0 - ac-

celeration and deceleration rate, 1 ± motor work current. In the DRV (Pulse/Dir) mode potentiometer 2

is used to set microstepping, 0 ± motor work current, 1 - holding current.

The RUN/STOP switch is used to start and stop program execution in PROG and SPD control

modes. It is used to switch between parameters setting and operation in DRV control mode.

Fig. 2 (a ± c) shows the controller terminals and their purpose depending on the control mode.

SMSD-1.5Mus

user manual

10

2. Technical specifications

� Characteristic Value

min max

1

Supply voltage, VDC

SMSD-1.5Modbus ver.3 12 36

SMSD-4.2Modbus and SMSD-8.0Modbus 12 49

2

Max. output current per phase, A

SMSD-1.5Modbus ver.3 0.15 1.5

SMSD-4.2Modbus 1.0 4.2

SMSD-8.0Modbus 2.8 8.0

3 High level of logic inputs, VDC 2.4

4 Low level of logic inputs, VDC 0,7

5 Voltage of logic transistor output, VDC 80

6 Max current of logic transistor output, mA 50

7 Voltage of logic relay output, VAC/VDC 350

8 Max current of logic relay output DC (AC/DC), mA 250 (~120)

9 Max current of additional output +5VDC, mA 200

10 Duration of high voltage level of STEP signal in Step/Dir control
mode (DRV), ns

250(1)

11 Duration of high voltage level of STEP signal in Step/Dir control
mode (DRV), ns

250(1)

12 Duration of high voltage level of signals at inputs IN0 and IN1, ns 70(1)

13 Duration of low voltage level of signals at inputs IN0 and IN1, ns 70(1)

14 Duration of high voltage level of signals at inputs IN2...IN7, �s 5(1)

15 Duration of low voltage level of signals at inputs IN2...IN7, �s 5(1)

16 PWM signal generation frequency, Hz 0,3 5000

17 Base instruction time, �s(2) 20

(1) ± on condition of 5VDC high voltage level

(2) - with no regard for returning to zero line, setting of outputs and reading of inputs

11

Additional information

� Characteristic Value

1 Possible baud rates for RS-485 data transmission 1200, 2400, 4800, 9600, 14400, 19200,
38400, 57600, 115200, 128000, 256000

2 Possible microstepping settings 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/128, 1/256

3 Communication protocol Modbus RTU, Modbus ASCII

4 Programing language IL (Instruction List), LD* (Ladder Diagram)

* ± special software is needed to convert LD to IL before writing the program into the controller

SMSD-1.5Mus

user manual

12

3. Operation sequence

The sequence of the controller operation is the next:

² reading of external devices (logic inputs, Modbus Coils);

² user program processing;

² setting of new states of output devices (logic outputs, Modbus Discrete Inputs, executing of

motion).

The user program consists of a sequence of control instructions (commands) that determine the

final functionality. The controller executes the commands sequentially one by one. The total program

pass is continuously repeated. The time required for one program pass is called the cycle time, and the

program passes are called cyclic scanning.

The controllers are able to operate in real-time mode and and can be used both for building

local automation nodes and distributed I / O systems with the organization of data exchange via

RS-485 interface with Modbus protocol.

We offer special software for assembling and debugging of user programs, which does not

require significant computer resources and is a simple tool for users. Two programming languages

are used: LD (ladder contact logic or ladder diagrams) and IL (list of instructions).

3.1. The principle of operation of relay-contact circuits and ladder diagrams in

the controller

The language of the ladder diagrams is a derivate of the relay-contact circuit diagram in a

simplified representation. The relay-contact circuits in the controller have a set of basic components,

such as: normally-open contact, normally-closed contact, coil (output), timer, counter, etc., as well as

applied instructions: mathematical functions, motor control commands, data processing and a large

number of special functions and commands. We can assume that the controller is tens or hundreds of

separate relays, counters, timers and memory. All these counters, timers, etc. physically do not exist,

but are modeled by the processor and are designed to exchange data between built-in functions,

counters, timers, etc.

The relay-contact logic language in the controller is very similar to the basic relay-contact

elecWULFDO�FLUFXLWV�LI�ZH�FRPSDUH�LW¶V�XVHG�JUDSKLF�V\PEROV��7here can be two types of logic in relay-

contact circuits: combined, i.e. circuits consisting of fragments which are independent each of other,

and sequential logic, where all the steps of the program are interconnected and the circuit cannot be

parallel-ized.

Combined logic

The first segment of the circuit consists of one normally open contact X0 and a coil Y0, which

determines the state of the output Y0. When the state of contact X0 is open (logical "0"), the state of

output Y0 is also open (logical "0"). When the contact X0 is closed, the output Y0 also changes its

state to closed (logical "1").

13

The second segment of the circuit consists of one normally-closed contact X1 and coil Y1,

which determines the state of output Y1. In the normal state of contact X1, output Y1 will be closed

(logical "1"). When the state of contact X1 changes to open, the output Y1 also changes its state to

open.

At the third segment of the circuit, the state of output Y2 depends on a combination of the

states of the three input contacts X2, X3, and X4. Output Y2 is closed when X2 is turned off and X4 is

turned on or when X3 and X4 are turned on.

The general scheme is a combination of three segments, which operate independently each of other.

X0

X1

X2

X3

X4

Y0

Y1

Y2

Fig. 9 ± relay-contact circuit

X0

X2 X4

Y0

Y1

Y2

X3

X1

Fig. 10 ± ladder diagram in the controller

Sequential logic

In the sequential logic circuits the result of execution at a previous step is an entry condition for the

next step. In other words an output at the previous steps is an input at the following step.

Y3
X5 X6

Y3

Fig. 11 ± relay-contact circuit

Y3

Y3

X6X5

Fig. 12 ± ladder diagram in the controller

When X5 contact is closed, the output Y3 changes its state to close. However when X5 is open

again��<��NHHSV�LW¶V�FORVH�VWDWH�WLOO�WKH�PRPHQW�ZKHQ�;��LV�RSHQ��,Q�WKLV�FLUFXLW�WKH�RXWSXW�<��LV�

selflocking.

15

puts occur without changing their physical condition. During this stage, the state of physical and virtu-

al inputs may change, but the next buffering of the updated state will occur at the first stage of the next

cycle of the user program.

At the third stage the controller changes the state of the physical and virtual outputs.

Another difference between the relay-contact logic of the controller and conventional relay-

contact electrical circuits is that the user programs run in rows only from left to right and from top to

bottom. For example, a circuit with a reverse current direction (section a-b in) will result in an error

during compilation in the controller.

Y0
X0

X3

X6

X4

X1 X2

X5

a b

Fig. 14 ± electric relay-contact circuit

Y0

X0 X1 X2

X3 X4 X5

X6

a b

Fig. 15 ± relay-contact circuit of the controller

An error in 3d row

3.3. Operands

All internal objects (devices) of the controller ± operands ± are divided into few different types

and have addresses. Every of types have its own designation and format, which determines what space

LW�WDNHV�LQ�WKH�PHPRU\�RI�WKH�FRQWUROOHU��7KXV��IRU�H[DPSOH��LQSXW�UHOD\V�DUH�QDPHG�³;´�DQG�KDYH��-bit

IRUPDW��JHQHUDO�SXUSRVH�GDWD�UHJLVWHUV��DUH�QDPHG�³'´�DQG�KDYH���-bit (1 word) or 32-bit (2 words)

format.

Type and name of the operand Description

Input X Input relays. Determine the state of external bit devices, which are
connected to input terminals of the controller and state of virtual
inputs, which status can be set via Modbus protocol. These oper-
ands can take on one of two possible values: 0 or 1. Addressing is
octal: O���;�����;���;����;�������

Output Y Output relays. Determine the state of output terminals of the con-
troller, to which the load is connected and the state of virtual out-
puts, which status can be read via Modbus protocol. In the pro-
gram can be either contacts or coils. These operands can take on
one of two possible values: 0 or 1. Addressing is octal: Y0,
Y1...Y7, Y10, Y11, ...

Merker M Auxiliary relays. It is a memory for binary intermediary results. In
the user program can be either contacts, or coils. These operands
can take on one of two possible values: 0 or 1. Addressing is dec-
imal: M0, M1...M7, M8, M9,...

SMSD-1.5Mus

user manual

16

Timer T Time relay. In the program can be used for storage of current tim-
er value and have 16-bit format. Also these operands can be used
as contacts and take on one of two states: 0 or 1 Addressing is
decimal: 7���7�����L��

Counter C Counter is used to implement counting. In the program can be
used for storage of current value of the counter and have 16-bit or
32-bit format, and also can be used as a contact and take on one of
two possible meanings: 0 or 1 Addressing is decimal: C0,
C1...C66

Decimal constant K Determines a number decimally

Hexadecimal constant H Determines a number hexadecimally

Floating-point constant F Determines a floating-point number

Data register D Data storage. 16-bit or 32-bit format. Addressing is decimal: D0,
D1,..., D391. For 32-bit data one element takes two registers. As
an example - for reading 32-bit data from D10 register the data is
read from registers D10 and D11.

Index register A Data storage for intermediary results and for index identification.
16-bit format. Addressing: A0 ± A7, B0 ± B7 decimal

B

Pointer P An address for subprogram call. Decimal.

Interrupt pointer I Address of interrupt handling. Decimal.

3.4. Graphic symbols of control instructions at a ladder diagram

A relay-contact circuit consists of one vertical line at the left and horizontal lines extending to

the right. Vertical line at the left is a bus line, horizontal lines are command lines = steps. There are

symbols of entry conditions on command lines leading to commands (instructions) located on the

right. The logical combinations of these entry conditions determine when and how right-handed com-

mands are executed.

The next symbols are used in relay-contact circuits:

Symbol Description Command Operands

Input contact ± normally open LD X, Y, M, T, C

Input contact ± normally closed LDI X, Y, M, T, C

17

Input pulse contact ± rising-edge LDP X, Y, M, T, C

Input pulse contact ± falling-edge LDF X, Y, M, T, C

Output signal (coil) OUT Y, M

Basic and application instructions
Refer to chapter
7.Application
instructions

Refer to chapter
7.Application
instructions

Logic inversion INV -

Input contacts can be combined into serial and parallel blocks:

Serial connections:

AND ANI ANDP ANDF

Parallel connections:

OR ORI ORP ORF

ORB ANB MPS, MRD, MPP

Fig. 16 ± Graphic symbols of control instructions

Program scanning starts from the upper left corner of the diagram and ends in the lower right

corner. The following example illustrates the sequence of a program:

SMSD-1.5Mus

user manual

18

Y1

TMR T0 K10

X0 X1 Y1 X4

M3T0M0

X3 M1

4

1
2 3 5

6

87

Fig. 17 ± sequence of a program

1 LD X0
2 OR M0
3 AND X1
4 LD X3

AND M3
ORB

5 LD Y1
AND X4

6 LD T0
AND M3
ORB

7 ANB
8 OUT Y1

TMR T0 K10

Symbols of input signals with a rising edge (when a signal is switched from 0 to 1) and with a

falling edge (when a signal is switched from 1 to 0) are explained below:

OFF ON OFF

TIME

Rising edge contact

OFF ON OFF

TIME

Falling edge contact

Fig. 18 ± Edge filtering

The logical block commands ANB and ORB do not correspond to specific conditions on the re-

lay-contact circuit, but describe the relationship between the blocks. The ANB command performs the

LOGIC AND operation on the execution conditions produced by two logical blocks.

ANB commands

Fig. 19 ± ANB instruction

19

The ORB command performs a LOGIC OR operation on the execution conditions produced

by two logical blocks.

ORB command

Fig. 20 ± ORB instruction

3.5. Convert relay contact circuits (LD) to mnemonic code (IL)

The figure below shows a program presented in the form of relay contact symbols (LD) and a list of

instructions - mnemonic code (IL). The figure shows the sequence of converting the ladder diagram

(LD) into the code executed by the controller (IL).

SMSD-1.5Mus

user manual

20

X0 X2

M0X1

M1

M2 Y0

X1

C0

M0 X10

M10

X11

X12M11

M20 M12 M13

X13

X0

C0 X1

X1

M2

Y0

Y10

Y11

Y12

M0

M0

M1

M2

SET M0

SET M10

SET M11

SET M12

SET M13

SET M20

CNT C0 K10

RST C0

END

Y2

LD X0

OR X1

LD X2

OR M0

ORI M1

ANB

LD M2

AND Y0

ORB

ANI X1

OUT Y0

AND C0

SET M0

LD M0

AND X10

OUT Y10

SET M10

LD M10

AND X11

OUT Y11

SET M11

SET M12

SET M13

LD M11

AND X12

OUT Y12

SET M20

LD M20

AND M12

AND M13

OUT M0

AND X13

OUT Y2

LD M0

CNT C0 K10

LD C0

MPS

AND X1

OUT M0

MRD

ANI X1

OUT M1

MPP

ANI M2

OUT M2

END

1 2

1

2

3

3

4 4 55

6

Block

OR

Block

OR

Block

AND

Serial connection

of blocks

Parallel connection

of blocks

Branching

The state of the output

will be set according to

the inputs states during

the program executing

Block

AND

6

9

Setting the

output and

marker

7

8

10

11

12

13

14

15

16

7

8
Block

OR

Setting the

output and

marker

9

Block

AND

Setting the

output and

marker

11

10

Block

AND12

Branching

13

14

15 Reading of

state of C0

End of the program

Branching

16

Relay contact circuits (LD)

Fig. 21 ± Converting of LD into IL

The processing of the relay-contact circuit starts at the upper left corner and ends in the lower

right, however, there may be exceptions and various options for converting to mnemonic code, as

shown in the following examples:

21

Example 1

The ladder diagram below can be converted into instruction list in two different ways, but the

result will be identical (Fig. 22) .

The first encoding method is most preferable as the number of logical blocks is unlimited.

The second method is limited by maximum logic blocks number (max blocks number is 8).

X1

X0 X2

X3 X5

X4 Method 1 Method 2

LD X0
OR X1
LD X2
OR X3
ANB
LD X4
OR X5
ANB

LD X0
OR X1
LD X2
OR X3
LD X4
OR X5
ANB
ANB

Fig. 22 ± different methods of using ANB instructions

Example 2

Different encoding methods of parallel connected contacts are shown below (Fig. 23).

X1

X0

X2

X3

Method 1 Method 2

LD X0
OR X1
OR X2
OR X3

LD X0
LD X1
LD X2
LD X3
ORB
ORB
ORB

Fig. 23 ± different methods of using ORB instructions

The first method of converting of ladder diagram into instructions list is the most preferable

from the point of view of using the controller RAM.

SMSD-1.5Mus

user manual

22

4. Controller functionality

4.1. Operands overview

Type Operand Range of addresses Function

R
el

a
y

s
(1

-b
it

 m
em

o
ry

)

X External in-
put relays

Physical inputs ;�«;� Max.
128
points

Controller inputs

Virtual inputs

(Modbus Coil)

;��«;���

Y External
ouput relays

Physical out-
puts

<�«<� Max.
128
points

Controller outputs

Virtual outputs

(Modbus Dis-
crete Inputs)

<��«<���

M Internal re-
lays

(merkers)

General pupose 0�«0����

0���«0���
Max.
128
points

Intermediate binary memory.
Corresponds to intermediate
relays in electrical circuits.

Special purpose 0���«0���

T Timers Resolution
100 ms

7�«7���

(T46, T47 ± ac-
cumulative)

Max.
64
points

Used as contacts (T), which
close when the corresponding
timer reaches its set value
(TMR command)

Resolution
10 ms

7��«7�3

(T62, T63 ± ac-
cumulative)

C Counters Incremental
general purpose

&�«&�� Max.
66
points

Used as contacts (C), which
close when the corresponding
counter reaches its set value
(CNT command)

External pulses C64, C65

R
eg

is
te

rs
 (

1
6

-b
it

 m
em

o
ry

)

T Current timer value 64 points �7�«7��� Registers for storage of cur-
rent timers values

C Current counter value 66 ± 32-bit counters Registers for storage of cur-
rent counters values

D Data regis-
ters

General pur-
pose

'�«'�����

D3��«'���
Max.
384
points

Used to store data. Special
registers configure the con-
troller and display its status

Nonvolatile(1) '���«'���

Special '���«'��4

A Index regis-
ters

Minor 16 bits $�«$� Max.

16
points

Can be used for index indica-
tion

B Major 16 bits %�«%�

23

P
o
in

te
rs

P Pointers for instructions
CALL, CJ

32 points �3�«3��� Labels for instructions of
transitions and subprograms

I Interruptions Communication I0 Max.
15
points

Labels for subprogram for
processing of interruptions

Timed ,�«,�����Max. 4
points)

External ,����«,����

'ULYHU¶V I2000, I2001

C
o
n

st
a
n

ts

K Decimal constants K-32768 ...K32767 (16-bit functions)

K-2147483648 ...K2147483647 (32-bit functions)

H Hexadecimal constants H0000...HFFFF (16-bit functions)

H00000000...HFFFFFFFF (32-bit functions)

F Floating point constant F�1.175494351 E-��«�3.402823466 E+38

(32-bit functions only)

(1) ± data storage is provided by internal power supply CR2032.

4.2. Addressing and functions of inputs [X] and outputs [Y]

The inputs and outputs in the user program are represented by operands. By specifying the

address of the operand, it is possible to refer to the physical and virtual inputs and outputs of the

controller during programming.

Discrete inputs/outputs are addressed in octal system, that means the numbers 8 and 9 are not

used for inputs and output.

Function of input relays X

Input relays X read the state of external physical devices (buttons, switches, relay contacts, etc.)

directly connected to the input terminals of the controller. Each input X can be used in the program an

unlimited number of times.

Function of output relays Y

Output relays Y control the state of the physical output contacts of the controller, and therefore
the load devices (lamps, relay coils, etc.) directly connected to the output terminals of the controller.

Each output Y can be used in the program an unlimited number of times, but it is recommended
to use output coil Y in the program no more than once, because when coil Y is used few times, the
output state is determined by the last Y in the scan.

The state of the I/O signals can be read in the program by different instructions.
The process of handling of I/O signals in the controller:

Inputs:

1. The controller reads the state of external input devices, and store it at the beginning of

each scan cycle.

2. Changes in the input state during the cycle will not be accepted if the input pulse is very

short (less than the time of one scan).

SMSD-1.5Mus

user manual

24

Program:

3. The controller executes the program starting from line 0 and stores the state of all oper-

ands in objects memory.

Outputs:

4. After executing the END instruction the state of the output relays Y is written to the

memory of the outputs and the states of the output contacts will be changed.

4.3. Addressing and function of internal relays >F@

To store the binary results of logical bindings (signal states "0" or "1"), an intermediate

memory (internal relay) is used inside the program. They correspond to intermediate relays in control

systems based on relay logic.

Two types of internal relays are used in the controller:

1. General purpose, which are not saved when the power is turned off;

2. Special purpose, which provide the user with additional functionality.

Internal relays are programmed as outputs. They can be used in the program an unlimited
number of times. Addressing of internal relays is in decimal format.

Appointment of special merkers:

Merker Function

0���«0��� These auxiliary relays are used only in conjunction with interruptions from the
external inputs I1000 ... I1007 respectively. The value of the merker corresponds
to the state of the physical input (IN0 ... IN7) at the moment when the interruption
was processed (I1000 ... I1007). The values X0 ... X7 are updated only at the be-
ginning of the next scan of the user program.

For example, after getting into the interrupt handler I1004, it is possible to deter-
mine the state of input IN4 by requesting the state of M104 (LD M104) (the value
of X4 is not relevant in this case).

M108 The rising edge of this auxiliary relay indicates the completion of initialization of
the controller peripherals. During subsequent work, the merker maintains a high
level value. Resetting the merker reinitializes the controller.

For example, after redefining the outputs by the PWM signal generators and the
inputs by pulse counters, re-initialization is required. In this case it is necessary to
reset M108.

M109 6HWWLQJ�WKH�PHUNHU�WXUQV�RQ�WKH�³(55´�LQGLFDWLRQ�RQ�WKH�IURQW�SDQHO�RI�WKH�FRQWURl-
ler, resetting disables it.

M110 Setting this merker and then resetting the M108 will result in a full reboot of the
controller.

25

4.4. Addressing and function of timers >L@

Some control processes require a time relay. Many relay-controlled systems use time relays

which switches on delay. The controller uses internal memory elements for these purposes, called tim-

ers. The characteristics of the timers can be determined in the program.

Addressing of timers is decimal.

T Timers Resolution 100 ms 7�«7����7����7���± accumulative) Max. 64 points

Resolution 10 ms 7��«7����7����7���± accumulative)

The required time setting is determined by a decimal constant K, which indicates the number of

counted time steps (discrete).

Example: a 100 ms resolution timer set as K5, the actual value of the setting will be 5 x 100 =

500 ms.

The timer operates with on-delay. It is activated with the contact state = 1. After counting the

set time value, the timer sets the corresponding input FRQWDFW�7�WR�VWDWH�³��´�7KH�WLPHU�UHWXUQV�WR�WKH�RII�

state and resets its current value when its input contact is VHW�WR�³�´�

The setting of the time setting can also be performed indirectly by means of a decimal number

recorded earlier in the data register D.

In the controllers the timer begins to count immediately when executes the TMR command.

Explanation of the operation of two types of timers:

General purpose timer

Y0

X0

T0

TMR K100

10 s

X0

T0

Y0

Timer

register

value

T0

Fig. 24 ± General purpose timer operating princi-
ple

When the input X0 takes the state "1", the
count of the set time begins. After reaching of the
programmed 10 seconds, the output Y0 takes the
state "1". The timer turns off and the T0 register is
reset to zero as soon as the input X0 takes the
state "0".

SMSD-1.5Mus

user manual

26

Accumulative timer

Y0

X0

T46

TMR K100

T1

X0

T46

Y0

Value of

timer

register

T46

T2 T1+T2=10 s

K100

Fig. 25 ± Accumulative timer operating principle

In addition to general purpose timers, the
controller has accumulative timers, which, after
disabling the control logical connection, save the
accumulated time value.

4.5. Addressing and function of counters [C]

It is necessary to count impulses (add or subtract) in some control processes. Many relay-

controlled systems use pulse counters for this purpose. The controller uses two types or internal

memory elements (counters).

Addressing of timers is decimal.

C Counters Incremental general purpose &�«&�� Max. 66
points

External pulses (hardware) C64, C65

Function of counters:

When the input signal of the counter changes its state from 0 to 1, the current value of counter

C increments by one. When it becomes equal to the set value (set pRLQW���WKH�FRXQWHU¶V�ZRUNLQJ�FRQWDFW�

turns on.

LD X0

RST C0

LD X1

CNT C0 K5

LD C0

OUT Y0

X0

X1

C0

Y0

CNT K5C0

RST C0

27

The counter is reset when X0=1: the cur-
rent value of register C0 = 0, contact C0 is open.

After switching X1 from 0 to 1, the value
of C) increments by one.

:KHQ�UHJLVWHU�YDOXH�K�� ����FRQWDFWV�K��DQG�<��

are closed, all next pulses at input are not counted.

X0

X1

C0

Current

value

Contacts Y0, C0

1
0

2

3
4

5

0

setting

Fig. 26 ± counter operating principle

General purpose counters do not count above a threshold, unlike hardware counters, which

GRQ¶W�QRW�RQ�WKH�LQSXW�VLJQDO��EXW�RQO\�RQ�WKH�SK\VLFDO�VWDWH�RI�WKH�GLVFUHWH�LQSXW, which it refers to. De-

pending on the value of the configuration register D355, the counters can be configured in the follow-

ing manner:

Value of

the register

D355

Configuration

0 The default value. X0 and X1 (IN0 and IN1) operate as discrete inputs.

1
The discrete input X0 refers to the counter C64, which counts rising-edges of pulses. X1
operates as a discrete input.

2
The discrete input X0 refers to the counter C64, which counts falling-edges of pulses.
X1 operates as a discrete input.

3
The discrete input X0 refers to the counter C64, which counts both rising-edges and fall-
ing edges of pulses. X1 operates as a discrete input.

4
X0 operates as a discrete input. The discrete input X1 refers to the counter C65, which
counts rising-edges of pulses.

5
X0 operates as a discrete input. The discrete input X1 refers to the counter C65, which
counts falling-edges of pulses.

6
The discrete inputs X0 and X1 refer to the counters C64 and C65 accordingly. The
counters count rising-edges of pulses.

7
The discrete inputs X0 and X1 refer to the counters C64 and C65 accordingly. C64
counts falling-edges of pulses, C65 counts rising-edges of pulses.

8
The discrete inputs X0 and X1 refer to the counters C64 and C65 accordingly. C64
counts both rising-edges and falling-edges of pulses, C65 counts rising-edges of pulses.

9
The discrete inputs X0 and X1 refer to the counters C64 and C65. C64 counts rising-
edges of pulses, C65 counts falling-edges of pulses.

10
The discrete inputs X0 and X1 refers to the counters C64 and C65 accordingly. The
counters count falling-edges of pulses.

SMSD-1.5Mus

user manual

28

11
The discrete inputs X0 and X1 refers to the counters C64 and C65 accordingly. C64
counts both rising-edges and falling-edges of pulses, C65 counts falling-edges of pulses.

12

The discrete inputs X0 and X1 refers to the counter C64 and operate as encoder. A quad-
rature signal is applied to the inputs.

X0

Channel�è

X1

Channel �ê

4.6. Addressing and function of registers [D], [A], [B]

Data registers [D]

Registers represent the data memory inside the controller. The registers can store numerical

values and binary information following one after another.

Data is stored in a 16-bit register (D0, etc.), which can store a number from -32768 to +32767.

The joint of two 16-bit registers gives a 32-bit "double register" (D0, D1, etc.), which can store a num-

ber from -2147483648 to +2147483647.

Addressing of data registers is decimal. For double-registers (32 bit) addressing starts with the

lower 16-bit register.

D Data registers General purpose '�«'�����

D38�«'���
Max. 384
points

Non-volatile '���«'���

Special '���«'��4

29

There are the next data register types:
General purpose data registers:
These registers are used during user program executing, the data are not saved when the power

is off.
Non-volatile data registers:
The data in these registers are saved in the controller memory when the power is off. The

memory power supply is provided by internal source CR2032.
Index registers:
This register is used to store intermediate results and to indicate operands.
Special registers:

These registers are used to configure the controller and for access to some special functionality.

The numbers of special registers are given in table below:

Register Function Values

D352 7KH�UHJLVWHU�FRQWDLQV�GDWD�RQ�WKH�SRVLWLRQ�RI�WKH�SRWHQWLRPHWHU�³�´�RQ�WKH�

front panel of the controller.
�«����

D353 The register contains data oQ�WKH�SRVLWLRQ�RI�WKH�SRWHQWLRPHWHU�³�´�RQ�WKH�
front panel of the controller.

�«����

D354 7KH� UHJLVWHU� FRQWDLQV� GDWD� RQ� WKH� SRVLWLRQ� RI� WKH� SRWHQWLRPHWHU� ³�´�

³6SHHG´�
�«����

D355 The register configures input types IN0 and IN1, for more details refer to
the section 4.5

�«��

D356 The register configures the types of outputs OUT6 and OUT7 for PWM
instruction (see 7.Application instructions, PWM instruction).

Value
Discretisation

time, ms

Function of output

OUT6 OUT7

0 ± output output

1 100 PWM generator output

2 10 PWM generator output

3 100 output PWM generator

4 10 output PWM generator

5 100 PWM generator PWM generator

6 10 PWM generator PWM generator

Refer to the section 7.Application instructions (PWM instruction) for de-
tailed information on producing of PWM signal.

�«�

'���«'��4 Mode-setting and status registers of the stepper motor driver. See the sec-
tion 8��©Instructions for stepper motor driver controlª for more details.

±

SMSD-1.5Mus

user manual

30

4.7. Index registers [A], [B]

Index registers are used to index operand addresses and change constant values.

The index registers are 16-bit registers.

In 32-bit instructions index registers A and B are used in combination. A contains 16 low-order

bits, B contains 16 high-order bits. Index register A is used as the destination address.

A0 B0

16 bit 16 bit

A0 B0

32 bit

low-order bits high-order bits

Fig. 27 - Index register structure

Example of data transfer from data register D5A0 to data register D10B0:

X0

MOV B0K14

MOV D10B0D5A0

MOV A0K8

Fig. 28 ± Data transfer using index registers

When X0 = 1: A0 = 8, B = 14

x Address of transfer source is D5A0 = 5 + 8 = D13
x Destination address is D10B0 = 10 + 14 = 24.
x In this way, data is transferred from the register
D13 to the data register D24

Index registers can be used for data transfer and comparison operations in conjunction with

byte operands and bit operands.

It is also possible to index constants in the same way. When indexing constants, it is required to

XVH�WKH�V\PERO�³#´��)RU�H[DPSOH��029�.���#�$��'�%��

31

4.8. Pointers [P], [I].

P Instruction pointers CALL, CJ 32 points (P�«3��� Labels or marks for commands of
transition or calling subprograms

I Interruptions Communication I0 Max.
15
points

Labels for subprogram for pro-
cessing of interruptions

Timed ,�«,���� �Max. 4
points)

External ,����«,����

Driver I2000, I2001

Pointers �J� are used in combination with instructions CJ (transitions) or CALL (subpro-

grams). These pointers are addresses of locations of places or subprograms, which were marked.

An example of executing a CJ jump instruction:

X0

X1

X2

Y2

CJ P1

Y1

0

P1 N

Fig. 29 ± Implementation of the CJ instruction

When X0 = 1, after the execution of line 0,
the program immediately goes to the line with the
pointer P1 and the lines located between them are
not executed.

If X0 = 0, the program executes normally
step by step.

An example of using subprograms:

SRET

X0

X1

CALL P2

Y1

20

P2

X2

X3

Y3

Y2

FEND

21

Calling subprogram P2

Subprogram

Return to the main program

Fig. 30 ± Implementation of the CALL instruction

:KHQ�O�� ���DW�OLQH����WKH�

program executing goes directly to
the line marked P2, the subprogram
executes, and after SRET command
program executing returns to the
line 21.

SMSD-1.5Mus

user manual

32

Interruption pointers (I) are used with instructions EI, DI, IRET for interrupting of main

program executing. There are the following types of interruptions:

1. Communication interruption: if the controller receives a broadcast frame via Modbus

protocol, it immediately (regardless of the scan cycle) goes to the interrupt processing

subprogram which is marked with the pointer I0. It returns to the main program after the

IRET instruction is executed.

2. Timed interruption: the interrupt processing subprogram is executed automatically at

specified time intervals from 10 to 1000 ms in increments of 10 ms. Totally it is possible to

have up to 4 timed interruptions. As an example, inerruptions with pointers I10, I50, I80,

I100 will be executed once per 100 ms, 500 ms, 800 ms and 1 s accordingly. Executing

returns to the main program after instruction IRET.

3. External interruptions: when the signal at the input IN0 ... IN7 switches from 0 to 1 or from

1 to 0, the controller immediately turns to the execution of the interrupt processing

subproJUDP�ZLWK�WKH�FRUUHVSRQGLQJ�SRLQWHU�,��,1��:�,������,1��:�,������HWF����5HWXUQ�WR�

WKH�main program occurs after the IRET instruction is executed.

4. Driver interruption: when an error occurs during motor phases commutation, which is

represented by the special register D381 (ERROR_CODE, more details in the section

8. ³Instructions for stepper motor driver control´), the controller turns to the execution of

the subprogram with the I2000 pointer. When the status of the stepper motor driver

changes, register D371 (MOTOR_STATUS, for more details refer to the section 8.

³Instructions for stepper motor driver control´), the controller turns to the executing of the

subprogram with the pointer I2001. The controller returns to the main program after the

IRET instruction is executed.

33

5. Error codes

If the "ERR" LED is on after loading and running the user program, this means that the user

program contains an error: a grammatical error or incorrect operand error. Each error that occurs in the

controller is recorded in a special register (step number and error code are recorded). This information

can be read using a PC or PLC. The table below contains a list of error codes and descriptions.

Address Type Size Description

E004 Input Registers 16-bit Error code during executing of a user program.

E084 Input Registers 16-bit Line of the user program, where the error was detected.

E004 Coils Error flag during user program executing.

Error

code
Description

2012h Unknown command

1007h Internal error, type of signal collision is not identified.

1005h Internal error, signal type in case of level collision is not identified.

1006h Internal error, signal type when inverted level collision is not identified.

2002h LD instruction, stack overflow.

2001h The type of the main signal is not identified.

2000h Processing of LD-type commands, the instruction code has changed.

1001h Internal error, unknown type of single collision.

1000h Internal error, single collision at the current value. The signal type of the operand is un-
known.

200Bh Processing of AND-type command when removing the signal from the output stack. Un-
known collision type.

1004h Group collision internal error. Unknown collision type.

1002h Group collision internal error. The type of operand signal for level collision is not defined.

1003h Group collision internal error. The type of operand signal for inverse level collision is not
defined.

200Ch Processing of AND-type command, the instruction code has changed.

200Dh Processing of OR-type command, the instruction code has changed.

2010h There are not entries in the main stack when the ANB instruction is applied.

200Fh Applying of ANB instruction error. There are not entries in the output stack, and there is
only one entry in the main stack.

200Eh Unknown signal in the output stack with ANB command.

2011h The absence of at least two elements in the main stack for applying the ORB instruction.

SMSD-1.5Mus

user manual

34

Error

code
Description

2013h Brunching stack overflow, instruction MPS.

2016h Brunching stack is empty, instructions MRD, MPP.

2015h Main stack overflow, instructions MRD, MPP.

2014h Signal type is not recognized when assigning selector, instructions MRD, MPP.

2017h Stack overflow, instruction NEXT.

3012h Prescan ± index P is ut of range.

3014h Prescan ± index I is ut of range.

3013h Prescan. Unable to create a new timed interruption, limit on quantity exceeded.

201Dh Incorrect operand type, instructions CJ/CJP.

201Ch Operand is out of range, instructions CJ/CJP.

2024h Incorrect operand type, instructions CALL/CALLP.

2023h Operand is out of range, instructions CALL/CALLP.

2025h There are no return points in the stack, instruction SRET.

2004h A command END/FEND was received during interruption processing.

202Ah A command IRET was received in the main program.

2056h Instruction END, main stack is not empty.

2057h Instruction END, brunching stack is not empty.

2058h Instruction END, cycles stack is not empty.

2059h Instruction END, subprograms stack is not empty.

2026h Instruction IRET, main stack is not empty.

2027h Instruction IRET, brunching stack is not empty

2028h Instruction IRET, cycles stack is not empty.

2029h Instruction IRET, subprogram stack is not empty.

2020h Instruction CALL/CALLP, unknown index operand.

201Eh Instruction CALL/CALLP, index operand A is out of range.

201Fh Instruction CALL/CALLP, index operand B is out of range.

201Ah Instruction CJ/CJP, unknown index operand.

2018h Instruction CJ/CJP, index operand A is out of range.

2019h Instruction CJ/CJP, index operand B is out of range.

201Bh Instruction CJ/CJP, the requested pointer does not exist.

2022h Instruction CALL/CALLP, the requested mark does not exist.

35

Error

code
Description

2021h Instruction CALL/CALLP, stack overflow.

2003h Incorrect operand, instruction OUT.

200Ah Incorrect operand, instruction SET/RST.

2005h Instruction SET can not be applied to operand C.

2006h Instruction SET can not be applied to operand T.

2007h Instruction SET can not be applied to operand D.

2008h Instruction SET can not be applied to operand A.

2009h Instruction SET can not be applied to operand B.

202Dh Instruction INV, unknown signal type.

202Bh Instruction TMR, the first argument is not typical.

202Ch Instruction CNT, the first argument is not typical.

202Eh Instruction INC/DEC, incorrect operand.

2037h Instruction ADD/SUB/MUL/DIV/WAND/WOR/WXOR, type of 3d operand is incorrect.

2038h Instruction NEG/ABS, incorrect operand type.

2030h Instruction CMP, type of 3d operand is incorrect.

2031h Instruction ZCP, type of 3d operand is incorrect.

202Fh Instruction MOV/BMOV/FMOV, incorrect type of destination operand.

2039h Instruction XCH, data type of 1st operand is incorrect.

203Ah Instruction XCH, data type of 2d operand is incorrect..

203Bh Instruction ROR/ROL, data type of 1st operand is incorrect.

2033h Instruction ZRST, operands are not of the same type

2032h Instruction ZRST, operand type is incorrect.

2036h Instruction DIV, division by zero of an integer.

2046h Instruction DECO, type of 2d operand is incorrect.

2047h Instruction ENCO, type of 2d operand is incorrect.

2048h Instruction SUM, type of 2d operand is incorrect.

2049h Instruction BON, type of 2d operand is incorrect

204Bh Instruction SQR, type of 2d operand is incorrect.

204Ah Instruction SQR, negative value.

204Ch Instruction POW, type of 3d operand is incorrect.

203Ch Instruction FLT, type of 2d operand is incorrect.

SMSD-1.5Mus

user manual

36

Error

code
Description

203Dh Instruction INT, type of 2d operand is incorrect.

203Eh Instruction PWM, the third operand is not applicable for PWM signal output.

203Fh Instruction PWM, type of 3d operand is incorrect.

2041h Instruction DECMP, type of 1st operand is incorrect.

2040h Instruction DECMP, type of 2d operand is incorrect.

2042h Instruction DECMP, type of 3d operand is incorrect.

2045h Instruction DEZCP, type of 3d operand is incorrect.

2044h Instruction DEZCP, type of 1st operand is incorrect.

2043h Instruction DEZCP, type of 2d operand is incorrect.

2050h Instruction DEADD/DESUB/DEMUL/DEDIV/DEPOW, type of 3d operand is incorrect.

204Fh Instruction DEADD/DESUB/DEMUL/DEDIV/DEPOW, type of 1st operand is incorrect.

204Eh Instruction DEADD/DESUB/DEMUL/DEDIV/DEPOW, type of 2d operand is incorrect.

204Dh Instruction DEDIV, divide by zero.

3015h Prescan error, unknown command detected.

2053h Instruction DESQR, type of 1st operand is incorrect.

2052h Instruction DESQR, type of 2d operand is incorrect.

2051h Instruction DESQR negative value.

2035h Instruction LD#, stack overflow.

2034h Instruction LD#, main signal type not recognized.

4000h Switch interruptions queue overflow.

4001h Timed interruptions queue overflow TIM0.

4002h Timed interruptions queue overflow TIM1.

4003h Timed interruptions queue overflow TIM2.

4004h Timed interruptions queue overflow TIM3.

4005h External interruptions queue overflow IN0.

4006h External interruptions queue overflow IN1.

4007h External interruptions queue overflow IN2.

4008h External interruptions queue overflow IN3.

4009h External interruptions queue overflow IN4.

400Ah External interruptions queue overflow IN5.

400Bh External interruptions queue overflow IN6.

37

Error

code
Description

400Ch External interruptions queue overflow IN7.

400Dh Driver interruptions queue overflow.

400Eh Motor status change interruption queue overflow.

2054h Instruction TRD, incorrect operand type.

2055h Instruction TWR, incorrect operand type.

3000h Stacks are empty, no signal value.

3001h The main stack is empty, no signal value.

3003h The index register value is out of range.

3004h Index of operand X is out of range.

3005h Index of operand Y is out of range.

3006h Index of operand M is out of range.

3007h Index of operand C is out of range.

3008h Index of operand T is out of range.

3009h Index of operand A/B is out of range.

300Ah Index of operand D is out of range.

300Bh Index of operand P is out of range.

300Ch Index of operand I is out of range.

300Dh Unknown operand type

300Fh Impossible to get the operand value.

300Eh FLOAT number is used with 16-bit instruction.

3010h Getting operand value - incorrect operand type.

3011h Getting token of operand - incorrect operand type.

5000h Power supply + 5V - short circuit

205Ah Instruction TWR, incorrect time format.

205Bh MOD instruction, division by zero.

205Ch DWR command, invalid date format.

205Dh Contact type instruction stack overflowed (LD#*)

205Eh Contact type instruction stack overflowed (AND#*)

205Fh Contact type instruction stack overflowed (OR#*)

SMSD-1.5Mus

user manual

38

6. Basic instructions

Instruction Function

LD Normally open contact

Operand X Y M T C A B D

� � � � �

Description:

Instruction LD is used as a normally open contact for programming of starts of logical chains.

It is located at left in contact scheme and connected directly to the power bus line.

Use:

Y1

X1X0 LD X0

AND X1

OUT Y1

The instruction LD X0 "normally open contact X0" starts the sequential logic connection. If at

the inputs X0 and X1 there is simultaneously a signal "1", then the output Y1 will be set to the state "1".

Instruction Function

LDI Normally closed contact

Operand X Y M T C A B D

� � � � �

Description:

Instruction LDI is used as a normally closed contact for programming of starts of logical

chains. It is located at left in contact scheme and connected directly to the power bus line.

Use:

Y1

X1X0 LDI X0

AND X1

OUT Y1

The instruction LDI X0 "normally closed contact X0" starts the sequential logic connection. If at

the inputs X0 and X1 there is simultaneously a signal "1", then the output Y1 will be set to the state "1".

39

Instruction Function

AND Series connection - normally open contact (logic AND)

Operand X Y M T C A B D

� � � � �

Description:

Instruction AND is used as a series connected normally open contact for programming of logi-

cal multiplication operation (AND). The instruction represents a logical operation and therefore cannot

be programmed at the beginning of the sequence. For sequence beginning instructions LD or LDI must

be used.

Use:

Y1

X0X1 LDI X1

AND X0

OU Y1

The instruction AND X0 "Series connection - normally open contact O0" creates a series logi-

cal connection with contact X1 DQG�XVHG�WR�SHUIRUP�WKH�ORJLFDO�PXOWLSOLFDWLRQ�RSHUDWLRQ��,I�WKHUH�LV�³�´�

DW�LQSXW�;��DQG�³�´�DW�;���WKHQ�RXWSXW�<��WXUQV�WR the VWDWH�³�´�

Instruction Function

ANI Series connection - normally closed contact (logic NAND)

Operand X Y M T C A B D

� � � � �

Description:

Instruction ANI is used as a series connected normally closed contact for programming of logi-

cal operation NAND (AND NOT). The instruction represents a logical operation and therefore cannot

be programmed at the beginning of the sequence. For sequence beginning instructions LD or LDI must

be used.

Use:

Y1

X0X1
LD X1

ANI X0

OUT Y1

The instruction "Series connection - normally closed contact O���creates a series logical con-

nection with contact X1 and used to perform the logical operation NAND. ,I�WKHUH�LV�³�´�DW�LQSXW�;��

and DQG�³�´�DW�;�, then output Y1 turns to the VWDWH�³�´.

SMSD-1.5Mus

user manual

40

Instruction Function

OR Parallel connection ± normally open contact (logic OR)

Operand X Y M T C A B D

� � � � �

Description:

The instruction OR is used as a parallel connected normally open contact for programming of

logical addition (OR). The instruction represents a logical operation and therefore cannot be pro-

grammed at the beginning of the sequence. For sequence beginning instructions LD or LDI must be

used.

Use:

Y1

X1

X0
LD X0

OR X1

OUT Y1

The instruction "Parallel connection ± normally open contact X1" creates a parallel logical con-

nection with contact X0 and used to perform the operation of logical addition. If at least one of the in-

puts X0 or X1 is "1", then the output Y1 turns to the state "1".

Instruction Function

ORI Parallel connection ± normally closed contact (logic NOR)

Operand X Y M T C A B D

� � � � �

Description:

The instruction ORI is used as a parallel connected normally closed contact for programming of

logical operation NOR (OR NOT). The instruction represents a logical operation and therefore cannot

be programmed at the beginning of the sequence. For sequence beginning instructions LD or LDI must

be used.

41

Use:

Y1

X1

X0
LD X0

ORI X1

OUT Y1

The instruction "Parallel connection ± normally closed contact X1" creates a parallel logical

connection with contact O��and used to perform the operation of logical instruction NOR (OR NOT).

If the input O��is "1" or the input X1 is "0" (one or both conditions at the same time), then the output

Y1 turns to the state "1".

Instruction Function

ANB ©$1'ª-block: series connection of blocks

Description:

² The instruction ANB is used for series connection of two logical chains (blocks).

Separate blocks of parallel connected elements are entered into the program separately.

To connect these blocks in series, an ANB instruction is programmed after each block.

² Start branching programmed using LD or LDI instructions.

² ANB instruction is independent and does not require any operands.

² ANB instruction within the whole user program can be used unlimited times.

² Instruction ANB is shown as a series connection in a contact diagram. The instruction

ANB in a list of IL language instructions can be shown in a contact circuit as a jumper.

² If it is necessary to connect few separate blocks one after another, the number of LD/

LDI instructions and also the number of ANB instructions must be limited by 8.

Use:

Y1

X2

X0

X3

X1ANB

Block�è Block�ê

LD X0

ORI X2

LDI X1

OR X3

ANB

OUT Y1

The instruction ANB creates a series logical connection between two logic blocks (Block A and

Block B).

SMSD-1.5Mus

user manual

42

Instruction Function

ORB ©ORª-block: parallel connection of blocks

Description:

² The instruction ORB is used for parallel connection of two or more series connected

contacts or blocks. If several series connected blocks are connected in parallel, it is

necessary to add ORB instruction after every block.

² The branching start is programmed using the LD or LDI instructions.

² ORB-Instruction is independent and does not require any operands.

² ORB-Instruction within the user program can be used unlimited times

² If several separate blocks are programmed directly one after another, it is necessary to

limit the number of LD and LDI instructions and also the number of ORB instructions

to 8.

² The ORB instruction is shown as a parallel connection in a contact diagram. The

instruction ORB in a list of IL language instructions can be shown in a contact circuit

as a jumper.

Use:

Y1

X2

X0

X3

X1

ORB

Block�è

Block�ê

LD X0

ANI X1

LDI X2

AND X3

OR

OUT Y1

The instruction ORB creates a series logical connection between two logic blocks (Block A and

Block B).

Instruction Function

MPS Offset down the stack

Instruction Function

MRD Read value from the stack

Instruction Function

MPP Exit from the stack

43

Description:

² The instructions 036��05'��FJJ�are used to create levels of logical connections (for

example, after one initial logical expression, create several logical expressions at the

output, i.e., turn on several output coils).

² Using the MPS instruction, the previous result of logical connections (processing of a

logical expression) is stored.

² Using the MRD instruction, it is possible to create several independed branches

between the beginning (MPS) and the end (MPP) of the branch. The result of

processing a logical expression at MPS point is taken into account at each branch.

² The last branch is created by MPP-instruction.

² The branching opened with the MPS instruction must always be closed by the MPP

instruction.

² 036��05'��033�LQVWUXFWLRQV�GRQ¶W�QHHG�DQ\�RSHUDQGV�

² These instructions are not shown in the contact diagram. If programming is done in a

contact circuit, the branches are used as usual. When convert a user program from a

ladder diagram (LD) to an instruction list (IL), MPS-, MRD- and MPP-instructions

should be added to IL.

Use:

Y1

X0

X2

X1
MPS

M0

Y2

END

MRD

MPP

LD X0

MPS

AND X1

OUT Y1

MPD

AND X2

OUT M0

MPP

OUT Y2

END

MPS

An intermediate result (X0 value) at the 1st level of logical connections is listed on the 1st

place in the stack memory of intermediate connections. Logical multiplication of X1 with X0 is per-

formed and output Y1 is set.

MRD

Before executing the next instruction, an intermediate result at the 1st place of the memory of

logical connections is read. Logical multiplication of X2 with X0 is performed and the output of M0 is

set.

SMSD-1.5Mus

user manual

44

MPP

Before executing the next instruction, an intermediate result at the 1st place of the memory of

logical connections is read. The output Y2 is set. The operation at the 1st level of intermediate results

is completed, and the memory of logical connections is cleared.

Instruction Function

OUT Output coil

Operand X Y M T C A B D

� �

Description:

² The instruction OUT is used to set an output coil depending on the result of logical

connections (the result of processing the logical expression by the controller).

² Using the OUT instruction, it is possible to end the programming of a line (logical

expression).

² Programming several OUT instructions as a result of processing a logical expression is

also possible.

² The result of logical connections represented by the OUT instruction can be applied in

the next program steps as the state of the input signal, i.e. it can be read many times in

many logical expressions.

² The result of logical connections represented by the OUT instruction is active (on) as

long as the conditions for its turning on are valid.

² When programming the double recording of the same outputs (their addresses), problems

may arise during program execution. Avoid double recording the outputs, as this can

lead to interference when running the program.

Use:

Y1

X1X0

LDI X0

AND X1

OUT Y1

If O�� ���and X1 = 1 ± the instruction OUT Y1 set the state of the output Y1 = "1".

Instruction Function

SET Turning on latched output

Operand X Y M T C A B D

� �

45

Description:

² The state of operand can be set directly by the SET instruction.

² Operands Y and M can be turned on by the SET instruction.

² As soon as the entry condition is established for the SET instruction (signal "1"), the

corresponding operand turns on.

² If the entry conditions for the SET instruction are no longer satisfied, the corresponding

operand remains on.

Use:

Y0X0

SET Y1

LD X0

ANI Y0

SET Y1

Output Y1 turns on when entry conditions (X0, Y0) are satisfied. After that the output Y1

GRHVQ¶W�GHSHQG�RQ�HQWU\�FRQGLWLRQV��7KH�RQO\�ZD\�WR�WXUQ�WKH�RXWSXW�<��RII�LV�WR�XVH�567�LQstruction or

to turn off the controller power supply.

Instruction Function

RST Reset of operand state

Operand X Y M T C A B D

� � � � � � �

Description:

The state of an operand can be reset directly.

RST-instruction turns of corresponding operands. It means:

² Outputs Y, contacts F�are turned off (signal state "0").

² Current values of timers and counters, values of registers D, A and B are reset to "0".

² As soon as the entry condition is established for the RST instruction (signal "1"), the

corresponding operand turns off.

² If the entry conditions for the RST instruction are no longer satisfied, the

corresponding operand remains off.

Use:

X0

RST Y1

LD X0

RST Y1

The output Y1 turns off when condition X1 is satisfied and remains off even when condition

X0 is not met.

SMSD-1.5Mus

user manual

46

Instruction Function

TMR Timer (16-bit)

Operands K H F X Y M T C A B D

S1 �

S2 � � � � � � �

Description:

² The Instruction TMR is used to set a signal state (turn on/off) depending on the

result of logical connections after a period of time specified in the instruction.

² Using the TMR instruction, it is possible to end the programming of a line (logical

expression).

² The result of logical connections represented by the TMR instruction can be used in

the next program steps as the state of the input signal, i.e. can be read many times in

many logical expressions

² The result of logical connections represented by the TMR instruction is active (turned

on) as long as the entry conditions are valid.

Use:

X0

TMR K1000T5

LD X0

TMR T5 K1000

Upon condition O�� ���the instruction 705�L��counts until the value in the T5 register reach-

es the value of K1000 (100 sec). If X0 = 0, the execution of the TMR instruction will stop and T5 will

reset to "0".

Instruction Function

CNT
S1 S2

Counter (16-bit)

DCNT Counter (32-bit)

Operands K H F X Y M T C A B D

S1 �

S2 � � � � � � �

Information

47

D
Usually, to use 32-bit instructions, the prefix "D" is added to the name

of the instruction.
D

± only a 32-bit version of the instruction exists.
P

For impulse instructions with a one scan "lifetime", the postfix "P" is
added. The concept of a single scan should be attributed to the used oper-
and. For example, the operand M0 on line 7 of the main program was set
from "0" to "1". Now for all instructions below that are before FEND or
END, the M0 operand has a pulse component on the leading edge (the re-
VXOW�IRU�/'3�0��ZLOO�EH�³�´���DV�ZHOO�DV�IRU�LQVWUXFWLRQV�VWDUWLQJ�IURP�WKH�

0th line to the 6th line during next scan the operand M0 will has a pulse
component. When go to line 7 (or lower if a CJ command is used), M0 will
have a high signal level without pulse components. Thus, one circle was
made along the body of the program - one scan, shifted to the operand
change line. In case of interruptions arise before reaching the line 7, the
operand M0 keeps the pulse component until returning to the main pro-
gram. If the operand M0 has been modified in an interruption or subpro-
gram, then the place where the operand is changed is considered to be the
line from which the transition to the subprogram or the main program line
was carried out, before processing of which the interrupt handler was
called.

Description:

² The instruction CNT is used to summarize the number of closures of the input contact

and assign the signal state (turn on the output) when the current counter value reaches

the set value.

² Using the CNT instruction, it is possible to end the programming of a line (logical

expression).

² - The result of logical connections represented by the CNT instruction can be applied

in the next program steps as the state of the input signal, i.e. can be read many times in

many logical expressions.

² To reset the current value of a counter use RST instruction.

² Attention: hardware counters count above the threshold and work regardless of the

presence of an input signal

Use:

X0

CNT K100C20

LD X0

CNT C20 K100

:KHQ�;��FKDQJHV�IURP�³�´�WR�³�´�WKH�YDOXH�RI�WKH�UHJLVWHU�K���LQFUHDVHV�E\����,W�UHSHDWV�XQWLO�

the value of register C20 reaches K100 (100 pulses). After that the count stops, the contact C20 turns

on. To reset the value of the register C20 use the instruction RST C20.

SMSD-1.5Mus

user manual

48

Instruction Function

LDP Beginning of logical expression with a rising edge polling (impulse)

Operand X Y M T C A B D

� � � � �

Description:

² The instruction LDP is used to program the pulse start of a logical connection.

² The instruction LDP must be programmed at the beginning of the circuit.

² The LDP instruction is also used in conjunction with the ANB and ORB instructions

to start branching.

² The LDP instruction after a positive edge is stored for the duration of the program

cycle (scan).

Use:

Y1

X0 X1
LDP X0

AND X1

OUT Y1

The instruction �/'3�O���starts the series logical connection. If the input X0 changes from "0"

to "1" (and O�� �����then the output Y1 keeps the state "1" during one scan.

Instruction Function

LDF Beginning of a logical expression with a falling edge polling (impulse)

Operand X Y M T C A B D

� � � � �

Description:

² The instruction LDF is used to program the pulse start of a logical connection.

² The instruction LDF must be programmed at the beginning of the circuit.

² The LDF instruction is also used in conjunction with the ANB and ORB instructions

to start branching.

² The LDF instruction after a negative edge is stored for the duration of the program

cycle (scan).

49

Use:

Y1

X0 X1
LDF X0 3

AND X1

OUT Y1

The instruction �/')�O� starts the series logical connection. If the input X0 changes from "1"

WR������DQG�O�� ���, then the output Y1 keeps the state "1" during one scan.

Instruction Function

ANDP ©ANDª� with rising edge polling (impulse)

Operand X Y M T C A B D

� � � � �

Description:

² The instruction ANDP is used for programming of a series connected pulse contact

with rising edge polling (impulse).

Use:

Y1

X0 X1
LD X0

ANDP X1

OUT Y1

The instruction "ANDP X1" creates a series logic connection. If input X1 changes from "0" to

"1" (and O�� �����then the output Y1 keeps state "1" during one scan.

Instruction Function

ANDF ©ANDª�with polling on a falling edge (impulse)

Operand X Y M T C A B D

� � � � �

Description:

² The instruction ANDF is used for programming of a series connected pulse contact

with falling edge polling (impulse).

SMSD-1.5Mus

user manual

50

Use:

Y1

X0 X1
LD X0

ANDF X1

OUT Y1

The instruction "ANDF X1" creates a series logic connection. If input X1 changes from "1" to

�����DQG�O�� �����WKHQ�WKH�RXWSXW�<��NHHSV�VWDWe "1" during one scan.

Instruction Function

ORP ©ORª�with rising edge polling (impulse)

Operand X Y M T C A B D

� � � � �

Description:

² The instruction ORP is used for programming of a parallel connected pulse contact

with rising edge polling (impulse).

Use:

X1

Y1

X0

LD X0

ORP X1

OUT Y1

The instruction "ORP X1" creates a parallel logic connection. The output Y1 will keep state "1"

GXULQJ�RQH�VFDQ��LI�WKH�LQSXW�;��FKDQJHV�IURP�����WR�����RU��O�� ����

Instruction Function

ORF ©ORª�with falling edge polling (impulse)

Operand X Y M T C A B D

� � � � �

Description:

² The instruction ORF is used for programming of a parallel connected pulse contact

with falling edge polling (impulse).

51

Use:

X1

Y1

X0

LD X0

ORF X1

OUT Y1

The instruction "ORF X1" creates a parallel logic connection. The output Y1 will keep state "1"

GXULQJ�RQH�VFDQ��LI�WKH�LQSXW�;��FKDQJHV�IURP�����WR�����RU��O�� ���

Instruction Function

END End of program

Description:

The end of a user program and transition to the beginning of the program (step 0).

² Each controller program must end with an END instruction.

² If an END instruction is being programmed, then at this point the processing of the

program ends. Subsequent areas of the program are no longer taken into account. After

processing of the END instruction, the outputs are set and the program starts (step 0).

Use:

END

END

Instruction Function

FEND End of main program

Description:

The end of the main user program and the transition to the beginning of the program (step 0).
The main differences from the END instruction are the next:

² Processing does not end with the FEND command. The instruction FEND separates

the main program from subprograms and interruption handlers, which are located in

the area between the FEND and END instructions and are framed by P and SRET, I

and IRET.

² If subprograms and interruptions are not used in a user program, the instruction FEND

is not required.

² The instruction FEND can be used only once.

SMSD-1.5Mus

user manual

52

Use:

FEND

END

FEND

END

Instruction Function

NOP Empty line in the program

Description:

An empty line without logical functions can later be used for any instructions, for example,

during assembling of a program or for debugging.

² After successful assembling a program, NOP instructions should be deleted, otherwise

they uselessly extend the time of program cycle.

² The number of NOP instructions in a program is not limited.

Use:

LD X0

NOP

OUT Y0

NOP instructions are not displayed in contact diagrams.

Instruction Function

INV Inversion - replacing the result of logical connections with the opposite

Description:

² The instruction INV inverts the state of the result signal of the placed before
instructions.

² TKH�UHVXOW�RI�ORJLFDO�FRQQHFWLRQV�³�´�EHIRUH�,19�LQVWUXFWLRQ�WXUQV�WR�³�´�DIWHU�LW�
² 7KH�UHVXOW�RI�ORJLFDO�FRQQHFWLRQV�³�´�EHIRUH�,19�LQVWUXFWLRQ�WXUQV�WR�³�´�DIWHU�LW
² The INV instruction can be applied as AND or ANI instructions.
² The INV instruction can be used to reverse the result signal of a complex circuit.
² The INV instruction can be used to reverse the signal result of the pulse instructions

LDP, LDF, ANP, etc.

53

Use:

Y1

X0
LD X0

INV

OUT Y1

If the input O0 = 0, the output Y1 = 1. If the input O0 = 1, the output Y1 = 0.

Instruction Function

P Addressing a jump point in a program or subprogram

Operand �«��

Description:

² The P instruction is used to indicate a transition point for instructions CJ, CALL.

² The point number in the program should not be repeated.

Use:

X1

X0

CJ P10

Y1P10

LD X0

CJ P10

.

.

P 10

LD X1

OUT Y1

The point P10 indicates the transition address for executing of the instruction &-�J���

Instruction Function

I Addressing of an interruption point

Operand �«���������«����������� 2001

Description:

The instruction I is used to indicate the transition point to the interruption handler. Globally in-

terruptions are enabled by the instruction EN and disabled by the instruction DS.

Totally the controller can have 15 interruptions.

An interruption that occurs when a Modbus (broadcast or addressed to the controller) frame is

received through RS-485 is marked as I0

SMSD-1.5Mus

user manual

54

It is possible to organize up to 4 timed interruptions in the controller In, where n is the interrup-

tion handler call period of 10ms and can have a value from 1 to 100. So, J L Í

54
áIO, where T is a de-

sired period of call of the handler (measured as ms).

8 external interruptions I1000«I1007 correspond to discrete inputs 0..7. The interruption aris-

es when the level of the input signal is changed.

2 driver interruptions: I2000 ± arises in case of error and I2001 ± arises when the motor status

changes (refer to the section 8. ³Instructions for stepper motor driver control´�for more details).

Use:

I1001

Y1

FEND

X1

EI

DI

Y2

X2

IRET

EI Interruptions enabling

LD X1 NO contact X1

OUT Y1 Output Y1

«

DI Interruptions disabling

«

FEND End of main program

I 1001 Entry point for the inter-
ruption handler.

LD X2 NO contact X2

OUT Y2 Output Y2

«

IRET End of the interruption
handler

55

7. Application instructions

Instruction Operands Associated

variants

Function

CJ S P Conditional jump

S Pointers P are used as operands. The operands can be indexed (A, B)

Description:

Using the CJ instruction, a part of the program can be skipped. When applying this instruction,

the execution time of the program can be reduced. For example, skipping a section of the program al-

located for initializing the peripherals of the controller, turning on interruptions, etc. (refer to the sec-

tion 4.8 for more details).

CALL S P Calling subprogram

S Pointers P are used as operands. The operands can be indexed (A, B)

Description:

The instruction CALL is used to call a subprogram.

² A subprogram is marked with points P and can be called by a CALL-instruction.

² The SRET instruction must be placed in the end of subprogram.

² A subprogram must be placed after the instruction FEND and before the instruction

END.

² When CALL-instruction is being executed, the controller goes to the marked point.

After executing of SRET-instruction, the controller returns to the main program to the

instruction, which follows CALL.

² The points can be used with unlimited number of CALL instructions.

² Subprograms can be called from other subprogram. Maximum 8 nesting levels possible.

SRET End of subprogram

Description:

The instruction SRET defines the end of a subprogram (refer to the section 4.8 for more

details).

² Every subprogram must be finished with the SRET instruction.

² The program returns to the instruction following the CALL instruction after processing

the SRET.

² The instruction SRET can be used together with the CALL instruction only.

Note: WKLV�LQVWUXFWLRQ�GRHVQ¶W require entry condition (contacts are not needed).

SMSD-1.5Mus

user manual

56

IRET End of interruption handler

Description:

The instruction IRET defines the end of interruption processing (refer to the section 4.8 for

more details).

Note: WKLV�LQVWUXFWLRQ�GRHVQ¶W�UHTXLUH�HQWU\�FRQGLWLRQ��FRQWDFWV�DUH�QRW�QHHGHG���

EI Global interruptions enabling

Description:

The instruction EI enables interruption processing (refer to the section 4.8 for more details).

Note: WKLV�LQVWUXFWLRQ�GRHVQ¶W�UHTXLUH�HQWU\�FRQGLWLRQ��FRQWDFWV�DUH�QRW�QHHGHG��

DI Global interruptions disabling

Description:

The instruction DI disables interruption processing (refer to the section 4.8 for more details).

Note: WKLV�LQVWUXFWLRQ�GRHVQ¶W�UHTXLUH�HQWU\�FRQGLWLRQ��FRQWDFWV�DUH�QRW�QHHGHG��

Calling of an interruption handler subprogram

² When processing an interruption, a transition is made from the main program to the

interruption handler.

² After the interruption processing is completed, the controller returns to the main

program.

² The start of the interruption subprogram is determined by setting the marking

(interruption point).

² The end of the interruption subprogram is determined by the IRET instruction.

² The interruption subprogram must be programmed at the end of the user program after

the FEND instruction and before the END instruction.

Note: If neither of the two EI or DI instructions is programmed, the interrupionst mode is not

activated, i.e. no one of interruption signal will be processed.

Executing of an interruption subprogram

Several interruption subprograms going one after another are processed in the sequence of their

calling.

If several interruption subprograms are called at the same time, the interruption program with a lower

point address is processed first.

57

FOR S Start of a loop FOR-NEXT

K H F X Y M T C A B D

S � � � � � � �

Note: WKLV�LQVWUXFWLRQ�GRHVQ¶W�UHTXLUH�HQWU\�FRQGLWLRQ��FRQWDFWV�DUH�QRW�QHHGHG��

NEXT End of a loop FOR-NEXT

Note: WKLV�LQVWUXFWLRQ�GRHVQ¶W�UHTXLUH�HQWU\�FRQGLWLRQ��FRQWDFWV�DUH�QRW�QHHGHG��

Cycles

The instructions FOR/NEXT are used for programming of cyclic repetitions of program parts

(program loop).

Description:

² The part of the program between FOR- and NEXT instructions is repeated "n" times.

After completing the FOR instruction, the program proceeds to the program step after

the NEXT instruction.

² The value "n" may be in range from +1 to +32 767. If some value from the range from 0

to -32 768 is set, the loop FOR-NEXT is executed only once.

² Up to 8 nesting levels of FOR-NEXT loops are possible.

² The instructions FOR and NEXT can be used in pair only. Every FOR instruction

must be matched with NEXT instruction.

Source of errors

Errors appear in the program in the following cases:

² NEXT instruction goes before FOR instruction.

² The number of NEXT instructions differs from the number of FOR instructions.

² A large number of repetitions "n" can significantly increase a program executing time.

An example of using FOR/NEXT instructions:

The example below shows two FOR-NEXT loops one inside another.

The part of program A is executed 3 times (K3 means decimal number 3).

The part of program B is executed 4 times inside every of repetition of part A (K4 means

decimal number 4).

SMSD-1.5Mus

user manual

58

NEXT

FOR

FOR

NEXT

K3

K4

B A

CMP S1 S2 D D P Comparison of numerical data

K H F X Y M T C A B D

S1 � � � � � � �

S2 � � � � � � �

D � �

Note: operand D takes 3 addresses.

Description:

Comparison of two numerical data values (more, less, equal).

² Data in both sources (S1) and (S2) are compared.

² The result of comparison (more, less, equal) is displayed (indicated) by activating relay

M or output Y. Which of the contacts at destination operand (D) is active, is determined

by the comparison result:

�6���!��6���:��'�

�6��� ��6���:��'���

�6������6���:��'���

² Data in S1 and S2 are processed as signed integer data.

59

Example:

X10

CMP K10 D10

Y0

Y1

Y2

Y0

If K10 > D10, Y0 = On

If K10 = D10, Y1 = On

If K10 < D10, Y2 = On

Y0: is turned on if K10 > data register D10, Y1 and Y2 are turned off.

Y1: is turned on if K10 = data register D10, Y0 and Y2 are turned off.

Y2: is turned on if K10 < data register D10, Y0 and Y1 are turned off.

Y0, Y1, Y2 are not changed if the entry condition X10=0.

To reset the comparison results use instructions RST, ZRST.

ZCP S1 S2 S D D P Zone comparison of numerical data

K H F X Y M T C A B D

S1 � � � � � � �

S2 � � � � � � �

S � � � � � � �

D � �

Note:

² Operand D takes 3 addresses.

² Operand S1 must be less than S2.

Description:

² Comparison of numerical data values with numerical data areas (more, less, equal)

² Data in source (S) is compared with data in both sources (S1) and (S2)

² The result of comparison (more, less, equal) is displayed (indicated) by activating relay

M or output Y. Which of the contacts at destination operand (D) is active, is determined

by the comparison result.

�6�����6���:��'�

SMSD-1.5Mus

user manual

60

�6������6�����6���:��'�����

�6��!��6���:��'�����

² If value in (S1) more than value in (S2), all contact in operand (D) are reset.

To reset the comparison results use instructions RST, ZRST.

MOV S D D P Data transfer

K H F X Y M T C A B D

S � � � � � � � � � � �

D � � � � � � �

Description:

x The MOV instruction is used to transfer data from a data source (S) to a destination (D).

The value of the source (S) does not change.

x Data in the data source (S) is read as binary values when executing the MOV instruc

tion.

x Bit operands occupy the number of addresses corresponding to the instruction type - 16

or 32 addresses. In this case it is possible to combine the types of operands for the

source and destination. For example, as a result of executing the MOV D3 M0

command, the relays M0 ... M15 display the value of register D3 in binary form.

Example:

If the entry condition O� is turned on, the value of the register D0 = 10. If X0 is turned off, the

value of the register D0 is not changed.

If the entry condition X1 is turned on, the current value of the timer T0 is transferred to the data

register D10. If X1 is turned off, the value of the register D10 is not changed.

If the entry condition O2 is turned on, the value of the registers D20 and D21 is transferred to

the data registers D30 and D31; the current value of the counter C23 is transferred to the data registers

D40 and D41.

61

X0

MOV K10 D0

X1

X2

MOV T0 D10

DMOV D20 D30

DMOV C23 D40

BMOV S D n D P Block data transfer

K H F X Y M T C A B D

S � � � � � � � � � � �

D � � � � � � �

n � � � � � � �

Description:

Copy data packet. The shift during the operation is carried out both for the source operand (S)

and for the destination operand (D) to (n) block elements, depending on the instruction (16 bit or 32

bit).

Example:

X10

BMOV D0 D20 K4 D0

D1

D2

D3

D20

D21

D22

D23

n = 4

If X10 is turned on, the values of registers D0 ± D3 is transferred to the registers D20 ± D23.

SMSD-1.5Mus

user manual

62

FMOV S D n D P Transferring data to multiple addresses

K H F X Y M T C A B D

S � � � � � � � � � � �

D � � � � � � �

n � � � � � � �

Description:

The value of the source operand (S) are copied to (n) destination operands (D) of the same

types.

Example:

X10

FMOV K10 D10 K5

K10 D10

D11

D12

D13

n = 5

D14

The instruction FMOV copies value "10" to the data registers D10...D14.

XCH D1 D2 D P Data exchange

K H F X Y M T C A B D

D1 � � � � �

D2 � � � � �

Description:

The values of operands (D1) and (D2) are swapped.

63

Example:

X0

XCH D20 D40

If X0 = 1 the data exchange is done:

120

40

40

120

D20

D40

D20

D40

ADD S1 S2 D D P Addition of numerical data

K H F X Y M T C A B D

S1 � � � � � � �

S2 � � � � � � �

D � � � � �

Description:

² Binary data in the source operands (S1) and (S2) are added together. The result of the

addition is stored in the destination operand (D). The operation is performed on signed

integer data types.

(S1) + (S2) = (D)

² The high bit contains the sign of the result: 0 ± sign of a positive number, 1 ± sign of a

negative number.

² When executing a 32-bit instruction, the lower 16 bits should be indicated in the

operand. The following data register contains higher 16 bits.

Examples:

X0

ADD D0 D10 D20

(D0) + (D10) = (D20)

If X0 is turned on, the values of data registers D0 and D10 are added together, the result is

saved in the data register D20.

SMSD-1.5Mus

user manual

64

X0

DADD D30 D40 D50

(D31, D30) + (D41, D40) = (D51, D50)

If X0 is turned on, the result of addition the values of registers (D31, D30) and (D41, D40) is

saved in the data registers (D51, D50).

SUB S1 S2 D D P Subtraction of numerical data

K H F X Y M T C A B D

S1 � � � � � � �

S2 � � � � � � �

D � � � � �

Description:

² The data value in (S2) is subtracted from the data value (S1). The result of the

subtraction is stored in the destination operand (D). The operation is performed on

signed integer data types.

(S1) ± (S2) = (D)

² The high bit contains the sign of the result: 0 ± sign of a positive number, 1 ± sign of a

negative number.

² When executing a 32-bit instruction, the lower 16 bits should be indicated in the

operand. The following data register contains higher 16 bits.

Examples:

X0

SUB D0 D10 D20

(D0) - (D10) = (D20)

If O� is turned on, the difference between the data values in the registers D0 and D10 is calcu-

lated. The result is saved in the data register D20.

X0

DSUB D30 D40 D50

(D31, D30) - (D41, D40) = (D51, D50)

65

,I�O��LV�WXUQHG�RQ��WKH�GLIIHUHQFH�EHWZHHQ�WKH�GDWD�YDOXHV�LQ�WKH�UHJLVWHUV (D31, D30) and (D41,

D40) is calculated. The result is saved in the data registers (D51, D50).

MUL S1 S2 D D P Multiplication of numerical data

K H F X Y M T C A B D

S1 � � � � � � �

S2 � � � � � � �

D � � � � �

Description:

² The data in operands (S1) and (S2) are multiplied together. The result is stored in the

destination operand (D). The operation is performed on signed integer data types.

(S1) x (S2) = (D)

² The high bit contains the sign of the result: 0 ± sign of a positive number, 1 ± sign of a

negative number.

² When executing a 32-bit instruction, the lower 16 bits should be indicated in the

operand. The following data register contains higher 16 bits.

Examples:

X0

MUL D0 D10 D20

(D0) * (D10) = (D20)

If O� is turned on, the values in data registers D0 and D10 are multiplied together. The result

is saved in the data register D20.

X0

DMUL D30 D40 D50

(D31, D30) * (D41, D40) = (D51, D50)

If X0 is turned on, the values in registers (D31, D30) and (D41, D40) are multiplied together.

The result is saved in the data registers (D51, D50).

SMSD-1.5Mus

user manual

66

DIV S1 S2 D D P Division of numerical data

K H F X Y M T C A B D

S1 � � � � � � �

S2 � � � � � � �

D � � � � �

Description:

² The value of the source operand (S1) is divided by the data value from the source

operand (S2). The whole part of the division result is stored in the destination operand

(D). The operation is performed on signed integer data types.

(S1) / (S2) = (D)

² The high bit contains the sign of the result: 0 ± sign of a positive number, 1 ± sign of a

negative number.

² When executing a 32-bit instruction, the lower 16 bits should be indicated in the

operand. The following data register contains higher 16 bits.

² Division by zero leads to an error.

Examples:

X0

DIV D0 D10 D20

(D0) / (D10) = (D20)

If O� is turned on, division of data values in registers D0 and D10 is done. The result is saved

in the data register D20.

X0

DDIV D30 D40 D50

(D31, D30) / (D41, D40) = (D51, D50)

,I�O��LV�WXUQHG�RQ��GLYLVLRQ�RI�GDWD�YDOXHV�LQ�UHJLVWHUV (D31, D30) and (D41, D40) is done. The

result is saved in the data registers (D51, D50).

67

MOD S1 S2 D D P Calculation of the remainder of the division

K H F X Y M T C A B D

S1 � � � � � � �

S2 � � � � � � �

D � � � � �

Description:

² The value of the source operand (S1) is divided by the data value from the source

operand (S2). The remainder of the division is stored in the destination operand (D).

The operation is performed on signed integer data types.

(S1) % (S2) = (D)

² The high bit contains the sign of the result: 0 ± sign of a positive number, 1 ± sign of a

negative number.

² When executing a 32-bit instruction, the lower 16 bits should be indicated in the

operand. The following data register contains higher 16 bits.

² Division by zero leads to an error

Examples:

X0

MOD D0 D10 D20

(D0) % (D10) = (D20)

,I�O��LV�WXUQHG�RQ��GLYLVLRQ�RI�GDWD�YDOXHV�LQ�UHJLVWHUV�'��DQG�'���LV�GRQH. The result (remain-

der in division) is saved in the data register D20.

X0

DMOD D30 D40 D50

(D31, D30) % (D41, D40) = (D51, D50)

,I�O��LV�WXUQHG�RQ��GLYLVLRQ�RI�GDWD�YDOXHV�LQ�UHJLVWHUV�(D31, D30) and (D41, D40) is done. The

result (remainder in division) is saved in the data registers (D51, D50).

SMSD-1.5Mus

user manual

68

INC D D P Increment numerical data

K H F X Y M T C A B D

D � � � � �

Description:

The value in the operand (D) is incremented by 1.

Example:

X0

DINCP D0

The value in the data registers (D1, D0) is incremented by 1 if the entry condition X0 is turned

on. The instruction is activated due to the connected pulse function so that the summing process is not

performed in each program cycle.

DEC D D P Decrement numerical data

K H F X Y M T C A B D

D � � � � �

Description:

The value in the operand (D) is decremented by 1.

Example:

X0

DDECP D0

The value in the data registers (D1, D0) is decremented by 1 if the entry condition X0 is turned

on. The instruction is activated due to the connected pulse function so that the decrementing is not per-

formed in each program cycle.

69

WAND S1 S2 D D P Logical multiplication of numerical data
(operation "AND")

K H F X Y M T C A B D

S1 � � � � � � �

S2 � � � � � � �

D � � � � �

Note: WAND is a 16 bit instruction, DAND is a 32 bit instruction.

Description:

² The operation "logical AND" for numeric data is a bit operation (performed bit by bit).

² The values from the source operands (S1) and (S2) are multiplied bit by bit. The result

is stored in the destination operand (D).

² The truth table of logical multiplication:

(S1) (S2) (D)

1 1 1

1 0 0

0 1 0

0 0 0

Example:

X0

WAND D0 D2 D4

,I�O�� ����WKH�ORJLF�PXOWLSOLFDWLRQ�RI�YDOXHV�IURP�GDWD�UHJLVWHUV�'��DQG�'��LV�GRQH��7KH�UHVXOW�LV�

saved in the data register D4.

b15 b00

(S1) D0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1

WAND

(S2) D2 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0

(D) D4 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

SMSD-1.5Mus

user manual

70

WOR S1 S2 D D P Logical addition of numerical data (OR op-
eration)

K H F X Y M T C A B D

S1 � � � � � � �

S2 � � � � � � �

D � � � � �

Note: WOR is a 16 bit instruction, DOR is a 32 bit instruction.

Description:

² The operation "logical OR" for numeric data is a bit operation (performed bit by bit).

² The values from the source operands (S1) and (S2) are added bit by bit. The result is

stored in the destination operand (D).

² The truth table of logical addition:

(S1) (S2) (D)

1 1 1

1 0 1

0 1 1

0 0 0

Example:

X0

WOR D0 D2 D4

,I�O�� ����WKH�ORJLFDO�DGGLWLRQ�RI�YDOXHV�IURP�GDWD�UHJLVWHUV�'��DQG�'��LV�GRQH��7KH�UHVXOW�LV�

saved in the data register D4.

b15 b00

(S1) D0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1

WOR

(S2) D2 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0

(D) D4 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1

71

WXOR S1 S2 D D P Logical operation "exclusive OR"

K H F X Y M T C A B D

S1 � � � � � � �

S2 � � � � � � �

D � � � � �

Note: WXOR is a 16 bit instruction, DXOR is a 32 bit instruction.

Description:

² The operation "logical exclusive OR" for numeric data is a bit operation (performed

bit by bit)

² The values from the source operands (S1) and (S2) are processed bit by bit. The result is

stored in the destination operand (D).

² The truth table of logical exclusive OR:

(S1) (S2) (D)

1 1 0

1 0 1

0 1 1

0 0 0

Example:

X0

WXOR D0 D2 D4

If O�� ��� WKH�RSHUDWLRQ�³H[FOXVLYH�25´�LV�SHUIRUPHG�ZLWK�YDOXHV�LQ�GDWD�UHJLVWHUV�D0 and D2.

The result of the operation is saved in the data register D4.

b15 b00

(S1) D0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1

WXOR

(S2) D2 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0

(D) D4 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1

SMSD-1.5Mus

user manual

72

NEG D D P Logical negation

K H F X Y M T C A B D

D � � � � �

Description:

Logical negation operation (inversion of all bits in binary form and addition with 1) for numer-

ical data.

Example:

X0

NEGP D0

,I�O�� ����WKH�RSHUDWLRQ�RI�ORJLFDO�QHJDWLRQ and modification is performed with value in the op-

erand D0.

������:�-13931 + 1 = -13931

b15 b00

(D) D0 0 0 1 1 0 1 1 0 0 1 1 0 1 0 1 1

(D) D0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 0 1

-13931 : 13930 + 1 = 13931

b15 b00

(D) D0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 0 1

(D) D0 0 0 1 1 0 1 1 0 0 1 1 0 1 0 1 1

ROL D n D P Cycle shift to the left

K H F X Y M T C A B D

D � � � � �

n � � � � � � �

73

Description:

Bits rotation on (n) places to the left.

Example:

X0

ROLP D10 K4

If O�� ����the bits of the value in the data register D10 rotate on 4 bits to the left and the value

is modified.

1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0

high bit low bit

rotation to the left

high bit low bit

1 0 0 11 1 0 1 0 1 1 0 0 1 1 0

ROR D n P Cycle shift to the right

K H F X Y M T C A B D

D � � � � �

n � � � � � � �

Description:

Bits rotation on (n) places to the right.

Example:

X0

DRORP D10 K11

,I�O�� ����WKH�ELWV�RI�WKH�YDOXH�LQ�WKH�GDWD�UHJLVWHU�'���URWDWH�RQ����ELWV�WR�WKH�ULJKW�DQG�WKH�YDl-

ue is modified.

SMSD-1.5Mus

user manual

74

1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0

high bit low bit

rotation to the right

1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0

1 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1

high bit low bit

1 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1

ZRST D1 D2 D P Group reset of operands

K H F X Y M T C A B D

D1 � � � � � � �

D2 � � � � � � �

Description:

The values of several operands following one after another (operand region) can be reset by the

instruction ZRST. Bit contacts are turned of, the registers are set to a value of "0".

² Operands (D1) and (D2) determine the region to be reset.

² The operands in (D1) and (D2) must be of the same type.

² (D1) ± the first address of the region, (D2) ± the last address of the region.

² (D1) must be less than (D2).

Example:

X0

X1

X2

ZRST C24C0

ZRST Y10Y0

ZRST M100M0

X3

ZRST D100D0

When the entry conditions are satisfied, the bit operands Y0 ... Y10, M0 ... M100 are turned off

(turns to the state "0"). The numeric operands C0 ... C24, D0 ... D100 are turned to actual value "0".

The corresponding coils and contacts are switched off.

75

DECO S D n P Decoder ��:�����bit

K H F X Y M T C A B D

S � � � � � � � � � �

D � � � � � � �

n � � � � � � �

Note: If (D) is a bit operand���Q�� ��«���If (D) is a numeric operand���Q�� ��«�� If (n) is out of

possible range, the instruction is executed with the maximum possible (n) depending on (D).

Description:

Decoding data. Data in (n) operands is decoded starting from the start address, which is speci-

fied in (S). Operand (D) determines the starting address of the destination (where the result of decryp-

tion is written).

(n) is the number of operands whose data should be decoded. When specifying the bit operand

LQ��'���WKH�IROORZLQJ�PXVW�EH�REVHUYHG�������Q�������:KHQ�VSHFLI\LQJ�WKH�QXPHULF�RSHUDQG�LQ��'���WKH�

IROORZLQJ�PXVW�EH�REVHUYHG�������Q������

(S) is a start address of operands whose data should be decoded.

2n ± number of operands to be decoded.

(D) is a start address the destination operand.

Attention! The instruction does not execute if (n) = 0.

Accordingly, the output remains active if the input conditions at the end of the action turn off

again.

Example:

Use of a DECO instruction with bit operands in (D).

0

X0

DECOP X0 M10 K3

0 1 1

X2 X1 X0

0010000

01234567

= 3

M10M11M12M13M14M15M16M17

SMSD-1.5Mus

user manual

78

SUM S D D P Sum of single bits

K H F X Y M T C A B D

S � � � � � � �

D � � � � �

Description:

² Determining the number of active bits in a data word. The instruction counts turned on

bits in (S).

² The result value is written to (D).

If a 32-bit instruction is processed, then the high 16 bits (D + 1) of the destination operands (D)

are set to zero, since the maximum number of turned on bits in (S) is 32.

BON S D n D P Check bit state

K H F X Y M T C A B D

S � � � � � � �

D � �

n � � � � � � �

Note: The necessary condition: �Q�� ��«�������bit����Q�� ��«�������bit).

Description:

A single bit is checked inside the data word. If the bit (n) is turned on in (S), then the corre-

sponding bit in (D) is turned on.

SQR S D D P Square root calculation

K H F X Y M T C A B D

S � � � � � � �

D �

Description:

Square root calculation :&; L �¥:5;

79

The square root of the value in the operand (S) is being calculated, the result is be rounded off

to an integer and written to the operand (D). The operation is performed on signed integer data types.

Attention! The square root of a negative number always leads to an error.

FLT S D D P Convert integer to floating point

K H F X Y M T C A B D

S � � � � � � �

D �

Description:

The instruction FLT converts integer signed number to floating point format.

² The integer in the operand (S) is converted to a floating point number. The result is

saved in the operand (D).

² The result of converting is always 32-bit number.

PWM S1 S2 D PWM pulse output

K H F X Y M T C A B D

S1 � � � � � � �

S2 � � � � � � �

D �

Note: The value of the operand (S1) must be less than or equal to the value of the operand (S2).

Description:

(S1) ± pulse width, t.

(S2) ± period duration, T.

(D) ± output address, Y6 or Y7.

Valid values for (S1) and (S2) are from 1 to 32767. (S1) and (S2) are the number of sampling

intervals. The sampling period is set simultaneously for both channels 100 �V�RU�� ms by the special

register D356 (see the section 4.6 for more details).

A PWM signal is present at the output as long as the signal at the input of the PWM instruction

is active.

user manual

80

Example:

X0

PWM K3 K8 Y6

t ± pulse width

td - sampling time

T ± period

Let the sampling period be 100 �s. When the input condition X0 = 1 is satisfied, the PWM sig-

nal with a period of 8 x 100 �s = 0.8 ms and a pulse duration of 3 x 100 �s = 0.3 ms appears at the out-

put Y6.

ABS D D P Absolute value

K H F X Y M T C A B D

D � � � � �

Description:

The instruction ABS writes absolute value of a number into the operand (D). If the value in (D)

is negative, then after executing the ABS instruction WKH��VLJQ�³-´�LV�GLVFDUGHG�DQG�WKH�QXPEHU�EHFRPHV�

positive. If (D) has a positive value, then no changes occur.

Example:

X0

DABS D0

When the input condition is satisfied, the module of the number in the register (D1, D0) is de-

termined.

81

POW S1 S2 D D P Raising to a power

K H F X Y M T C A B D

S1 � � � � � � �

S2 � � � � � � �

D �

Description:

Raising to a power: :&; L � :5s;:Ì6;.

The instruction POW rises the value in the operand (S1) to the (S2) power. The result is saved

in the operand (D). The operation is performed on signed integer data types.

DECMP S1 S2 D D P Comparison of floating point numbers

K H F X Y M T C A B D

S1 � � � �

S2 � � � �

D � �

Note:

² 32-bit instruction only.

² The operand (D) takes 3 consecutive addresses.

² K and H types are not converted to F, but are projected onto a memory area. To convert

integer data types to floating point data, use the FLT instruction.

Description:

The instruction DECMP performs comparison of two binary floating point numbers and

outputs the result of the comparison.

² The DECMP instruction compares the floating point number in (S1) with the floating

point number in (S2).

² The comparison result is stored in 3 successive addresses.

² If the number in (S2) is less than the number in (S1), then the bit operand (D) is turned

on.

² If the number in (S2) is equal to the number in (S1), then the bit operand ((D) +1) is

turned on.

SMSD-1.5Mus

user manual

82

² If the number in (S2) is greater than the number in (S1), then the bit operand ((D) +2) is

turned on.

² The polled output operands remain turned on after disabling the entry conditions of the

instruction DECMP.

Example:

X0

DECMP D0 D100

M10

M11

M12

M10

If D10 > D100, M10 = On

If D10 = D100, M11 = On

If D10 < D100, M12 = On

When contact X0 is turned on, the floating point number specified in D100 (S2) is compared

with the floating point number specified in D0 (S1). If the number in D100 is less than the number D0,

then the relay M10 is activated. If the number in D100 is equal to the number D0, then the relay M11

is turned on. If the number in D100 is greater than the number D0, then relay M12 is activated.

7R�REWDLQ�WKH�FRPSDULVRQ�UHVXOWV�LQ�WKH�IRUP���������\RX�FDQ�XVH�SDrallel contact combinations

M10 - M12. To reset the result, you can use the instructions RST, ZRST.

DEZCP S1 S2 S D D P Zone floating point comparison

K H F X Y M T C A B D

S1 � � � �

S2 � � � �

S � � � �

D � �

Note:

² 32-bit instruction only.

² The operand (D) takes 3 consecutive addresses.

² K and H types are not converted to F, but are projected onto a memory area. To convert

integer data types to floating point data, use the FLT instruction.

83

Description:

Comparison of the floating point number with the selected (indicated) area and the output of

the comparison result.

² The instruction DEZCP compares the floating point number in the operand (S1) with

the area between (S1) and (S2).

² The comparison result is stored in 3 successive addresses.

² If the number in the operand (S) is less than the numbers in the operands (S1) and (S2),

then the bit operand (D) is turned on.

²

² If the number in the operand (S) is equal to the numbers between (S1) and (S2), then the

bit operand ((D) +1) is turned on.

² If the number in the operand (S) is greater than the numbers between (S1) and (S2),

then the bit operand ((D) +2) is turned on

² The polled output operands remain on after the DEZCP instruction entry conditions are

disabled.

² If the number in the operand (S1) is greater than the number in the operand (S2), then

all bits in (D), (D+1), (D+2) will be reset.

DEADD S1 S2 D D P Addition of floating point numbers

K H F X Y M T C A B D

S1 � � � �

S2 � � � �

D �

Note:

² 32-bit instruction only.

² K and H types are not converted to F, but are projected onto a memory area. To convert

integer data types to floating point data, use the FLT instruction.

Description:

Calculating the sum of two numbers in binary floating point format.

² The floating point numbers specified in (S1) and (S2) are added together. The result of

the addition is stored in the destination operand (D).

² Two consecutive registers are used for each operand.

² The same operand can be used for the source and for the destination. In this case, the

calculated result is again stored in the source operand and can be used for the next

calculation. This process is repeated in each program cycle.

SMSD-1.5Mus

user manual

84

Examples:

X0

DEADD D0 D2 D10

When the input X0 is turned on, the floating-point number in (D3, D2) is added to the floating-

point number in (D1, D0). The result is saved in (D11, D10).

X2

DEADD F1.568 D10 D20

When the input X2 is turned on, the floating-point number in (D11, D10) is added to the con-

stant F1.568. The result is saved in (D21, D20).

DESUB S1 S2 D D P Subtraction of floating point numbers

K H F X Y M T C A B D

S1 � � � �

S2 � � � �

D �

Note:

² 32-bit instruction only.

² K and H types are not converted to F, but are projected onto a memory area. To convert

integer data types to floating point data, use the FLT instruction.

Description:

The instruction DESUB Computing the difference of two numbers in binary floating point

format.

² The floating point number specified in (S2) is subtracted from the floating point number

specified in (S1). The result is saved in (D).

² Two consecutive registers are used for each operand.

² The same operand can be used for the source and for the destination. In this case, the

calculated result is again stored in the source operand and can be used for the next

calculation. This process is repeated in each program cycle.

85

Examples:

X0

DESUB D0 D2 D10

When input X0 is turned on, the floating point number in (D3, D2) is subtracted from the float-

ing point number in (D1, D0). The result is saved in (D11, D10).

X2

DESUB F1.568 D10 D20

When the input X2 is turned on, the floating-point number in (D11, D10) is subtracted from the

constant F1.568. The result is saved in (D21, D20).

DEMUL S1 S2 D D P Multiplication of floating point numbers

K H F X Y M T C A B D

S1 � � � �

S2 � � � �

D �

Note:

² 32-bit instruction only.

² K and H types are not converted to F, but are projected onto a memory area. To convert

integer data types to floating point data, use the FLT instruction.

Description:

Multiplication of of two numbers in binary floating point format.

² The floating point number specified in the operand (S1) is multiplied by the floating

point number in the operand (S2). The result is saved in the operand (D).

² Two consecutive registers are used for each operand.

² The same operand can be used for the source and for the destination. In this case, the

calculated result is again stored in the source operand and can be used for the next

calculation. This process is repeated in each program cycle.

Examples:

X0

DEMUL D0 D2 D10

SMSD-1.5Mus

user manual

86

When input X0 is turned on, the floating point number in (D1, D0) is multiplied by the floating

point number in (D3, D2). The result is saved in (D11, D10).

X2

DEMUL F1.568 D10 D20

When input X2 is turned on, the constant F1.568 is multiplied by the floating point number in

(D11, D10). The result is saved in (D21, D20).

DEDIV S1 S2 D D P Floating point numbers division

K H F X Y M T C A B D

S1 � � � �

S2 � � � �

D �

Note:

² 32-bit instruction only.

² K and H types are not converted to F, but are projected onto a memory area. To convert

integer data types to floating point data, use the FLT instruction.

Description:

Calculation of the quotient of dividing two numbers in binary floating-point format.

² The floating point number specified in the operand (S1) is divided by the floating

point number specified in the operand (S2). The result is saved in (D).

² Two consecutive registers are used for each operand.

² The same operand can be used for the source and for the destination. In this case, the

calculated result is again stored in the source operand and can be used for the next

calculation. This process is repeated in each program cycle.

² The operand (S2) S2) cannot be zero because division by zero is not allowed.

Examples:

X0

DEDIV D0 D2 D10

When the input X0 is turned on, the floating point number in (D1, D0) is divided by the float-

ing point number in (D3, D2). The result is saved in (D11, D10).

87

X2

DEDIV D0 F1.568 D10

When the input X2 is turned on, the floating-point number in (D1, D0) is divided by the con-

stant F1.568. The result is saved in (D11, D10).

DESQR S D D P Square root in floating point format

K H F X Y M T C A B D

S � � � �

D �

Note:

² 32-bit instruction only.

² K and H types are not converted to F, but are projected onto a memory area. To convert

integer data types to floating point data, use the FLT instruction.

² Necessary condition���6������

Description:

Calculating the square root of a binary floating-point number.

² The square root is calculated from the floating point number specified in the operand

(S). The result is saved in (D).

² Two consecutive registers are used for each operand.

² The same operand can be used for the source and for the destination. In this case, the

calculated result is again stored in the source operand and can be used for the next

calculation. This process is repeated in each program cycle.

Examples:

X0

DESQR D0 D10

¥:&sá&r; \ :&ssá&sr;

When the input X0 is turned on, the square root of the floating point number in (D1, D0) is cal-

culated. The result is saved in (D11, D10).

X2

DESQR F16 D10

SMSD-1.5Mus

user manual

88

When the input X0 is turned on, the square root of the constant F16 is calculated. The result is

saved in (D11, D10).

DEPOW S1 S2 D D P Raising to a power in floating point format

K H F X Y M T C A B D

S1 � � � �

S2 � � � �

D �

Note:

² 32-bit instruction only.

² K and H types are not converted to F, but are projected onto a memory area. To convert

integer data types to floating point data, use the FLT instruction.

Description:

Raising a number to a power in binary floating point format.

² The number specified in (S1) is raising to the (S2) power. The result is saved in the

operand (D).

:5s;:Ì6; L :&;.

² Two consecutive registers are used for each operand.

² The same operand can be used for the source and for the destination. In this case, the

calculated result is again stored in the source operand and can be used for the next

calculation. This process is repeated in each program cycle.

INT S D D P Converting a floating point number to an
integer

K H F X Y M T C A B D

S . �

D � � � � �

Description:

The instruction INT converts floating point numbers to integers, rounded to the nearest.

² The floating point number specified in (S) is rounded to the nearest integer value and

saved in (D).

89

² The source operand is always a double word.

² When using the instruction INT, the word operand is the operand of the destination.

² When using the DINT instruction, the destination operand is a double word operand.

² The INT instruction is the inverse function of the FLT instruction.

Example:

X0

INT D0 D10

X1

DINT D20 D30

When input X0 is turned on, the floating point number in (D0, D1) is rounded to the nearest

lower integer value. The result is saved in D10.

When input X1 is turned on, the floating-point number in (D20, D21) is rounded to the nearest

lower integer value. The result is saved in (D30, D31).

TRD D P Reading time data

K H F X Y M T C A B D

D �

Note: The operand D takes 3 consecutive addresses.

Description:

Reading the current value of the real-time clock.

² Using the TRD instruction, real-time data is read (hours, minutes, seconds).

² This data is saved in 3 consecutive operand addresses (D).

Example:

X0

TRD D0

When input X0 is turned on, real-time data is read and saved in the registers D0 ... D2

Register Function Value Example

D0 Seconds �«�� 20

12:36:20 D1 Minutes �«�� 36

D2 Hours �«�� 12

SMSD-1.5Mus

user manual

90

TWR S P Recording time data

K H F X Y M T C A B D

S �

Note: The operand (S) takes 3 consecutive addresses.

Description:

The instruction TWR is used to change the real-time data (hours, minutes, seconds).

The data is taken from 3 consecutive addresses, specified in (S).

If the values in (S) exceed the allowed range of values, an error arises.

Example:

X0

TWRP D0

When the entry condition is satisfied, the real-time clock of the controller is set to the values

indicated in the registers D0 ... D2.

Register Function Value Example

D0 Seconds �«�� 42

03:11:42 D1 Minutes �«�� 11

D2 Hours �«�� 3

DRD D P Reading date data

K H F X Y M T C A B D

D �

Note: The operand D takes 3 consecutive addresses.

Description:

Reading the current date value.

² Using the DRD instruction, the current date is read (day, month, year).

² This data is saved in 3 consecutive operand addresses (D).

91

Example:

X0

DRD D0

When input X0 is turned on, real-time data is read and saved in the registers D0 ... D2

Register Function Value Example

D0 Day 1«31 26

26.01.22 D1 Month 1«12 1

D2 Year 21«99 22

DWR S P Recording date data

K H F X Y M T C A B D

S �

Note: The operand (S) takes 3 consecutive addresses.

Description:

The instruction DWR is used to change the date data (day, month, year).

The data is taken from 3 consecutive addresses, specified in (S).

If the values in (S) exceed the allowed range of values, an error arises.

Example:

X0

DWRP D0

When the entry condition is satisfied, the real-time clock of the controller is set to the values

indicated in the registers D0 ... D2.

Register Function Value Example

D0 Day 1«31 4

04.02.22 D1 Month 1«12 2

D2 Year 21«99 22

SMSD-1.5Mus

user manual

92

LD# S1 S2 D Contact type logical operations

K H F X Y M T C A B D

S1 � � � � � � � � � �

S2 � � � � � � � � � �

Note:

² The symbol # is &, |, ^.

² Bit operands are taken by 16 or 32, depending on the type of instruction, and are

converted to an integer data type for further processing.

Description:

Performing the logical operation "AND", "OR", "EXCLUSIVE OR" on the operands (S1) and

(S2), and turning on the LD-contact, depending on the result of the operation.

The instructions LD# in the program are located on the left and open a logical connection or are

conditions for the execution of commands at right.

16-bit instructions 32-bit instructions Contact closed if: Contact open if:

LD& DLD& (S1) & (S2) ��� (S1) & (S2) = 0

LD| DLD| (S1) | (S2) ��� (S1) | (S2) = 0

LD^ DLD^ (S1) ^ (S2) ��� (S1) ^ (S2) = 0

&: logical multiplication (AND)

|: logical addition (OR)

^: exclusive OR (XOR)

Example:

LD& D0 D10 Y0

93

AND# S1 S2 D Contact type logical operations

Serial connection

K H F X Y M T C A B D

S1 � � � � � � � � � �

S2 � � � � � � � � � �

Note:

² The symbol # is &, |, ^.

² Bit operands are taken by 16 or 32, depending on the type of instruction, and are

converted to an integer data type for further processing.

Description:

Performing the logical operation "AND", "OR", "Exclusive OR" on the operands (S1) and

(S2), and turning on the AND-contact depending on the result of the operation.

The AND# instructions in the program are located after the LD commands and create a logical

AND connection.

16-bit instructions 32-bit instructions Contact closed if: Contact open if:

AND& DAND& (S1) & (S2) ��� (S1) & (S2) = 0

AND| DAND| (S1) | (S2) ��� (S1) | (S2) = 0

AND^ DAND^ (S1) ^ (S2) ��� (S1) ^ (S2) = 0

&: logical multiplication (AND)

|: logical addition (OR)

^: exclusive OR (XOR)

Example:

AND& D0 D10 Y0

X0

SMSD-1.5Mus

user manual

94

OR# S1 S2 D Contact type logical operations

Parallel connection

K H F X Y M T C A B D

S1 � � � � � � � � � �

S2 � � � � � � � � � �

Note:

² The symbol # is &, |, ^.

² Bit operands are taken by 16 or 32, depending on the type of instruction, and are

converted to an integer data type for further processing.

Description:

Performing the logical operation "AND", "OR", "Exclusive OR" on the operands (S1) and (S2),

and turning on the OR-contact depending on the result of the operation.

The OR# instructions in the program are located at left in parallel to LD instruction and create a

logical OR connection.

16-bit instructions 32-bit instructions Contact closed if: Contact open if:

OR& DOR& (S1) & (S2) ��� (S1) & (S2) = 0

OR| DOR| (S1) | (S2) ��� (S1) | (S2) = 0

OR^ DOR^ (S1) ^ (S2) ��� (S1) ^ (S2) = 0

&: logical multiplication (AND)

|: logical addition (OR)

^: exclusive OR (XOR)

Example:

OR& D0 D10 Y0

X0

95

LD* S1 S2 D Contact type comparison operations

K H F X Y M T C A B D

S1 � � � � � � � � � �

S2 � � � � � � � � � �

Note:

² The symbol # is =, >, <, <>, �, �.

² Bit operands are taken by 16 or 32, depending on the type of instruction, and are

converted to an integer data type for further processing.

Description:

Comparison of the values of the operands (S1) and (S2), and turning on an LD contact,

depending on the result of the operation.

² The LD * instructions in the program are located at the left and begin a logical

connection or are conditions for the execution of instructions at right.

² If the comparison result is true, the LD contact is turned on.

² If the result of the comparison is false, the LD contact is turned off.

16-bit instructions 32-bit instructions Contact closed if: Contact open if:

LD= DLD= (S1) = (S2) (S1) � (S2)

LD> DLD> (S1) > (S2) (S1) � (S2)

LD< DLD< (S1) < (S2) (S1) � (S2)

LD<> DLD<> (S1) � (S2) (S1) = (S2)

LD<= DLD<= (S1) � (S2) (S1) > (S2)

LD>= DLD>= (S1) � (S2) (S1) < (S2)

Example:

LD= D0 D10 Y0

SMSD-1.5Mus

user manual

96

AND* S1 S2 D Contact type comparison operations

Serial connection

K H F X Y M T C A B D

S1 � � � � � � � � � �

S2 � � � � � � � � � �

Note:

² The symbol # is =, >, <, <>, �, �.

² Bit operands are taken by 16 or 32, depending on the type of instruction, and are

converted to an integer data type for further processing.

Description:

Comparison of the values of the operands S1 and S2, and turning on AND-contact, depending

on the result of the operation.

² The AND* instructions in the program are located after the LD commands and create a

logical AND connection..

² If the comparison result is true, the AND contact is turned on.

² If the result of the comparison is false, the AND contact is turned off.

16-bit instructions 32-bit instructions Contact closed if: Contact open if:

AND= DAND= (S1) = (S2) (S1) � (S2)

AND> DAND> (S1) > (S2) (S1) � (S2)

AND< DAND< (S1) < (S2) (S1) � (S2)

AND<> DAND<> (S1) � (S2) (S1) = (S2)

AND<= DAND<= (S1) � (S2) (S1) > (S2)

AND>= DAND>= (S1) � (S2) (S1) < (S2)

Example:

AND<= D0 D10 Y0

X0

97

OR* S1 S2 D Contact type comparison operations

Parallel connection

K H F X Y M T C A B D

S1 � � � � � � � � � �

S2 � � � � � � � � � �

Note:

² The symbol # is =, >, <, <>, �, �.

² Bit operands are taken by 16 or 32, depending on the type of instruction, and are

converted to an integer data type for further processing.

Description:

Comparison of the values of the operands S1 and S2, and turning on OR-contact, depending on

the result of the operation.

² The OR* instructions in the program are located at left in parallel to LD instruction and

create a logical OR connection.

² If the comparison result is true, the OR contact is turned on.

² If the result of the comparison is false, the OR contact is turned off.

16-bit instructions 32-bit instructions Contact closed if: Contact open if:

OR= DOR= (S1) = (S2) (S1) � (S2)

OR> DOR> (S1) > (S2) (S1) � (S2)

OR< DOR< (S1) < (S2) (S1) � (S2)

OR<> DOR<> (S1) � (S2) (S1) = (S2)

OR<= DOR<= (S1) � (S2) (S1) > (S2)

OR>= DOR>= (S1) � (S2) (S1) < (S2)

Example:

OR<> D0 D10 Y0

X0

SMSD-1.5Mus

user manual

98

8. Instructions for stepper motor driver control

The stepper motor driver is controlled by commands that specify the parameters of rotation or

movement. All commandss are divided into two groups: RUN and MOVE. The RUN group is de-

signed to control the current speed of the drive, and MOVE - to control movement. To start a rotation

after selecting a command and setting driver parameters, the SPIN instruction is called.

SPIN P Perform specified movement

Address Object type Description of the Modbus object

5100h Coils :ULWLQJ�³�´�WR�WKLV�REMHFW��HYHQ�LI�LW�LV�QRW�UHVHW��WULJJHUV�D�

parameterized movement, resetting is ignored.

Description:

The instruction starts a parameterized rotation. The movement parameters are set in the service

registers, which, like the instructions of the stepper motor driver, are accessible via the Modbus proto-

col in RUN mode. The instruction SPIN has lower priority than xSTOP and xHIZ. To avoid errors, it

is recommended to check the BUSY_MOVE and BUSY_RUN flags before calling the instruction

SPIN. Below is a detailed description of the driver service registers.

Address Object

type

Sevice register Size

(bit)

Description

Number Name

5000h Holding
Registers

D357 SPEED 32 The set (target) motor speed (in pulses
per second, pps) for the commands of
the RUN group and the maximum
speed for the commands of the MOVE
group. The lower threshold is 8 pps, the
upper limit is 120000pps under the
condition of FS_SW_EN reset. If
FS_SW_EN is set, the upper limit is
SPEEDmax=120000*2U_STEP.

5002h Holding
Registers

D359 MIN_SPEED 32 The minimum rotation speed for the
commands of the RUN group. For the
MOVE group, it is also the minimum
speed if the CMIN_SPD_EN flag is not
set. If CMIN_SPD_EN is set, the opti-
mal minimum speed is calculated au-
tomatically.

5004h Holding
Registers

D361 ACC 16 Acceleration, pps2.

5005h Holding
Registers

D362 DEC 16 Deceleration, pps2.

99

Address Object

type

Sevice register Size

(bit)

Description

Number Name

5006h Holding
Registers

D363 ABS 32 Current position. The unit of value is
equal to the displacement by the
amount of one microstep.

5008h Input
Registers

D365 U_POS 16 The current microstep position in four
full steps. Indicates the position of the
motor rotor relative to the stator poles.
The register is read-only.

5009h Holding
Registers

D366 U_STEP 16 Microstepping

Register value Microstepping

0 1/1

1 1/2

2 1/4

3 1/8

4 1/16

5 1/32

7 1/128

8 1/256

$�YDOXH�³�´�LV�QRW�YDOLG�

500Ah Holding
Registers

D374 DIR 16 Rotation direction:

"1" ± forward,

"0" ± backward. 500Ah Coils DIR

500Bh Holding
Registers

D377 FS_SPD_THR 32 The threshold value of turning from
microstepping to fullstep mode, meas-
ured in full steps per second.

500Dh Holding
Registers

D379 FS_SW_EN 16 6HWWLQJ� WKH� REMHFW� WR� ³�´� WXUQV� RQ� WKH�

morphing function ± the controller turns
to the fullstep mode after reaching the
speed specified in FS_SPD_THR. This
function allows to get greater torque at
KLJK�VSHHGV��5HVHWWLQJ�WKH�REMHFW�WR�³�´�

turns off this function (morphing/torque
boost).

500Dh Coils FS_SW_EN

500Eh Holding
Registers

D372 TARGET_POS 32 The target position to be reached. The
unit of value is equal to the displace-
ment by one microstep.

5010h Holding
Registers

D376 CMD 16 A movement command to the driver
(refer to the table below).

SMSD-1.5Mus

user manual

100

Address Object

type

Sevice register Size

(bit)

Description

Number Name

5011h Holding
Registers

D375 SW_INPUT 16 The input number for sensor connection
± for commands GOUNTIL_... and
«5(/($6(. Values �«��

Attention:

The declaration of interruption in the
main program is necessary for the used
inputs, The interruption handle can be
left empty.

Example:

A sensor is connected to the input X3
(IN3), the user program must include
the next part:

FEND

I 1003

IRET

END

5012h Holding
Registers

D367 ACC_CUR 16 Acceleration current, mA.

Valid values range:

SMSD-1.5Modbus ver.3 - ���«�����

SMSD-4.2Modbus ± ����«����

SMSD-8.0Modbus ± ����«�����.

5013h Holding
Registers

D368 DEC_CUR 16 Deceleration current, mA.

Valid values range:

SMSD-1.5Modbus ver.3 - ���«�����

SMSD-4.2Modbus ± ����«����

SMSD-8.0Modbus ± ����«�����.

5014h Holding
Registers

D369 STEADY_CUR 16 Constant speed current, mA.

Valid values range:

SMSD-1.5Modbus ver.3 - ���«�����

SMSD-4.2Modbus ± ����«����

SMSD-8.0Modbus ± ����«����

5015h Holding
Registers

D370 HOLD_CUR 16 Holding current, mA.

Valid values range:

SMSD-1.5Modbus ver.3 - ���«�����

SMSD-4.2Modbus ± ����«����

SMSD-8.0Modbus ± ����«����

101

Address Object

type

Sevice register Size

(bit)

Description

Number Name

5016h Holding
Registers

D382 CMIN_SPD_EN 16 "1" - use automatic calculation of the
start and final speed of movement for
the MOVE group commands.

"0" - use MIN_SPEED as the start and
final speed.

5017h Holding
Registers

D380 ERROR_SET_HIZ 16 Bits of this register determine which
driver errors must lead to de-energizing
the motor (the shaft rotates freely) - the
HiZ state.

5017h Coils TERMAL_OVER_CURRENT_

ERROR_SET_HIZ

0-bit of the register D380.

If the bit is set, an error TER-
MAL_ERROR (the driver circuit over-
heating ± the register D381) causes de-
energizing the motor (HiZ state).

5018h Coils SOFTWARE_ERROR_SET_HIZ 1-bit of the register D380.

If the bit is set, an error SOFT-
WARE_ERROR (the controller internal
error ± the register D381) causes de-
energizing the motor (HiZ state).

5019h Coils CMD_ERROR_SET_HIZ 2-bit of the register D380.

If the bit is set, an error CMD_ERROR
unabe to process an incoming command
± the register D381) causes de-
energizing the motor (HiZ state).

501Ah Coils DATA_ERROR_SET_HIZ 3-bit of the register D380.

If the bit is set, an error DA-
TA_ERROR (incorrect data entry in
ACC, DEC, U_STEP ± the register
D381) causes de-energizing the motor
(HiZ state).

501Bh Coils OUT_OF_LIM_MIN_SPD_

ERROR_SET_HIZ

4-bit of the register D380.

If the bit is set, an error
OUT_OF_LIM_MIN_SPD_ERROR_S
ET_HIZ (set speed less than minimum
± the register D381) causes de-
energizing the motor (HiZ state).

SMSD-1.5Mus

user manual

102

Address Object

type

Sevice register Size

(bit)

Description

Number Name

501Ch Coils OUT_OF_LIM_MAX_SPD_

ERROR_SET_HIZ

5-bit of the register D380.

If the bit is set, an error
OUT_OF_LIM_MAX_SPD_ERROR_
SET_HIZ (exceeding the maximum
possible speed ± the register D381)
causes de-energizing the motor (HiZ
state).

501Dh Coils UNREACHABLE_FS_SPD_

ERROR_SET_HIZ

6-bit of the register D380.

If the bit is set, an error UNREACHA-
BLE_FS_SPD_ERROR_SET_HIZ
(unable to reach fullstepspeed threshold
in torque boost mode ± the register
D381) causes de-energizing the motor
(HiZ state).

501Eh Coils NOT_APP_FS_PARAM_

ERROR_SET_HIZ

7-bit of the register D380.

If the bit is set, an error
NOT_APP_FS_PARAM_ERROR_SE
T_HIZ (transition from torque boost is
not possible while the motor is rotating
± the register D381) causes de-
energizing the motor (HiZ state).

5027h Holding
Registers

D381 ERROR_CODE 16 Error code. See below the description
of register bits (errors).

5027h Coils TERMAL_OVER_CURRENT_

ERROR

0-bit of the register D381

TERMAL_OVER_
CURRENT_ERROR ± overheating of
the driver circuit or excess current in
the motor windings.

5028h Coils SOFT_ERROR 1-bit of the register D381

SOFTWARE_ERROR ± controller in-
ternal error.

5029h Coils CMD_ERROR 2-bit of the register D381

CMD_ERROR ± unable to process an
incoming command.

502Ah Coils DATA_ERROR 3-bit of the register D381

DATA_ERROR ± Incorrect data entry
in ACC, DEC, U_STEP

103

Address Object

type

Sevice register Size

(bit)

Description

Number Name

502Bh Coils OUT_OF_LIM_MIN_SPD_ERROR 4-bit of the register D381

OUT_OF_LIM_

MIN_SPD_ERROR ± set speed is less
than minimum.

502Ch Coils OUT_OF_LIM_MAX_SPD_ERRO
R

5-bit of the register D381

OUT_OF_LIM_

MAX_SPD_ERROR ± exceeding the
maximum possible speed.

502Dh Coils UNREACHA-
BLE_FS_SPD_ERROR

6-bit of the register D381

UNREACHABLE

_FS_SPD_ERROR ± unable to reach
fullstepspeed threshold in torque boost
mode.

502Eh Coils NOT_APP_FS_PARAM_ERROR 7-bit of the register D381

. NOT_APP_FS_

PARAM_ERROR ± transition from
torque boost is not possible while the
motor is rotating.

502F Coils OVLO/UVLO_INTERNAL_

PROTECTION_ERROR

Error - the voltage of the internal power
circuits is outside the standard range.

5030 Coils VS_OUT_OF_RANGE_ERROR Error - the supply voltage is out of
range.

5037h Input
Registers

D371 MOTOR_STATUS 16 The register shows the current state of
the motor and control system. The de-
scription of the register bits is below.

5037h Discrete
Inputs

HIZ 0-bit of the register D371.

HiZ-state of the motor (phases are de-
energized).

5038h Discrete
Inputs

STOP 1-bit of the register D371. Holding
mode.

5039h Discrete
Inputs

ACCELERATING 2-bit of the register D371.

Acceleration.

503Ah Discrete
Inputs

DECELERATING 3-bit of the register D371.

Deceleration.

503Bh Discrete
Inputs

STEADY 4-bit of the register D371.

Constant speed rotation.

SMSD-1.5Mus

user manual

104

Address Object

type

Sevice register Size

(bit)

Description

Number Name

503Ch Discrete
Inputs

BUSY_MOVE 5-bit of the register D371.

Flag of the impossibility of applying
the commands of the MOVE group.

503Dh Discrete
Inputs

BUSY_RUN 6-bit of the register D371. Flag of the
impossibility of using the commands of
the RUN group.

5047h Input
Registers

D383 CURRENT_SPD 32 Current speed, pps.

(It is recommended to use the STEADY
flag as an event of reaching a given
speed).

5048h Holdings
Registers

D385 EMERGENCY_DEC 32 Emergency deceleration, pps2.

5100h Coils SPIN (APPLY_CMD) 6HWWLQJ�WKH�REMHFW�WR�³�´�RU�DSSO\LQJ�WKH�

SPIN instruction activates the execution
of the command specified in the CMD
register (D376), with the specified pa-
rameters.

5101h Coils TORQUE (APPLY_CURRENT) 6HWWLQJ� DQ� REMHFW� WR� ³�´� RU� DSSO\LQJ� D�

TORQUE instruction applies current
values ACC_CUR, DEC_CUR,
RUN_CUR, HOLD_CUR for the mo-
tor.

5102h Coils HSTOP (HARD_STOP) 6HWWLQJ�DQ�REMHFW�WR�³�´�RU�DSSO\LQJ�WKH�

HSTOP instruction immediately stops
the motor and turns to holding mode.

5103h Coils HHIZ (HARD_HIZ) 6HWWLQJ�DQ�REMHFW�WR�³�´��RU�DSSO\LQJ�WKH�

HHIZ instruction immediately turns the
motor to HiZ state.

5104h Coils SSTOP (SLOW_STOP) 6HWWLQJ�DQ�REMHFW�REMHFW�WR�³�´�RU�DSSOy-
ing the SSTOP instruction stops the
motor according to the DEC and then
turns to holding mode.

5105h Coils SHIZ (SLOW_HIZ) 6HWWLQJ�DQ�REMHFW�WR�³�´�RU�DSSO\LQJ�WKH�

SHIZ instruction stops the motor ac-
cording to the DEC and then turns to
HiZ state.

105

Movement command (CMD-register)

Value Group Name Description

0 RUN RUN Rotation according set speed SPEED, ac-
celeration ACC, deceleration DEC, direc-
tion DIR.

1 MOVE MOVE Displace by the specified number of steps
TARGET_POS with the given motion
parameters SPEED, ACC, DEC, DIR.

2 MOVE GOTO Move to the specified position TAR-
GET_POS with the given motion parame-
ters SPEED, ACC, DEC. DIR depends on
current position, the gived value is not
taken into account.

3 MOVE GOTO_DIR Move to the specified position TAR-
GET_POS with the given motion parame-
ters SPEED, ACC, DEC, DIR.

4 MOVE GOHOME Move to the position "0" with the given
motion parameters SPEED, ACC, DEC.
The command is equal to GOTO "0".

5 RUN GOUNTIL_SLOWSTOP Motion with a set speed SPEED, accelera-
tion ACC, direction DIR until the sensor
SW_INPUT is triggered on a rising edge
with an initial check of the input level
with following decelerating and stop ac-
cording to a set DEC.

6 RUN GOUNTIL_FRONT_SLOWSTOP Motion with a set speed SPEED, accelera-
tion ACC, direction DIR until the sensor
SW_INPUT triggers on a rising edge,
with following decelerating and stop ac-
cording to a set DEC.

7 RUN GOUNTIL_HARDSTOP Motion with a set speed SPEED, accelera-
tion ACC, direction DIR until the sensor
SW_INPUT is triggered on a rising edge
with an initial check of the input level and
then turn to holding mode.

8 RUN GOUNTIL_FRONT_HARDSTOP Motion with a set speed SPEED, accelera-
tion ACC, direction DIR until the sensor
SW_INPUT is triggered on a rising edge
and then turn to holding mode.

SMSD-1.5Mus

user manual

106

9 RUN RELEASE Motion with a set speed SPEED, ACC
acceleration, DIR direction until the sen-
sor SW_INPUT triggers on the falling
edge with an initial check of the input
level and then turn to holding mode.

10 RUN FRONT_RELEASE Motion with a set speed SPEED, accelera-
tion ACC, direction DIR until the sensor
SW_INPUT triggers on the falling edge
and then turn to holding mode.

Example:

X0

MOV D374K1

MOV D357K1000

MOV D376K0

SPIN

register CMD
command RUN

register DIR
movement forward

register SPEED
speed 1000 pps

Start movement

When the entry condition is
satisfied, the motion com-
mand, direction and speed of
rotation are set in the service
registers. The followed in-
struction SPIN starts moving.

TORQUE P Apply the set currents to the motor

5101h Coils :ULWLQJ�³�´�WR�DQ�REMHFW��HYHQ�LI�LW�LV�QRW�UHVHW��DSSOLHV�WR�WKH�

motor the values of current, which are set in service regis-
ters. Reset (value = ³�´) is ignored.

Description:

Applying of this instruction sets the operating currents of the motor indicated in the registers

ACC_CUR (D367), DEC_CUR (D368), RUN_CUR (D369), HOLD_CUR (D370).

107

Example:

X0

MOV D368K1500

MOV D369K1200

MOV D367K1500

TORQUE

Acceleration current
1500 mA

Deceleration current
1500 mA

Constant speed current
1200 mA

Apply currents

MOV D370K600
Holding current
600 mA

SSTOP P The motor stops according to the DEC pa-
rameter and then goes into holding mode.

5104h Coils :ULWLQJ�³�´�WR�DQ�REMHFW��HYHQ�LI�LW�LV�QRW�UHVHW��DSSOLHV�Po-
tor braking according to DEC and then goes to holding
mode, reset is ignored.

Description:

Applying of braking according to DEC and then turning to holding mode. This instruction

overrides the SPIN operation, has the same priority as SHIZ, but can be overridden by the HSTOP and

HHIZ instructions.

Example:

X0

SSTOP

SHIZ P The motor stops according to the DEC pa-
rameter and then goes to HiZ mode.

5105h Coils :ULWLQJ�³�´�WR�DQ�REMHFW��HYHQ�LI�LW�LV�QRW�UHVHW��DSSOLHV�Po-
tor braking according to DEC and then goes to HiZ mode,
reset is ignored.

Description:

Applying of braking according to DEC followed by de-energization of the windings. This in-

struction overrides the SPIN operation, has the same priority as SSTOP, but can be overridden by the

HSTOP and HHIZ instructions.

SMSD-1.5Mus

user manual

108

Example:

X0

SHIZ

HSTOP P Immediate stops the motor and then goes to
holding mode.

5102h Coils :ULWLQJ�³�´�WR�DQ�REMHFW��HYHQ�LI�LW�LV�QRW�UHVHW��LPPHGLDWHO\�

stops the motor and then goes to holding mode, reset is ig-
nored.

Description:

Immediate stops the motor and then goes to holding mode. This instruction overrides SPIN,

SSTOP, SHIZ, and has the same priority as HHIZ.

Example:

X0

HSTOP

HHIZ P Immediate stops the motor and then goes to
HiZ mode.

5103h Coils :ULWLQJ�³�´�WR�DQ�REMHFW��HYHQ�LI�LW�LV�QRW�UHVHW��LPPHGLDWHO\�
stops the motor and then goes to HiZ mode, reset is ignored.

Description:

Immediate stops the motor and then goes to HiZ mode (the motor is de-energized, the shaft ro-

tates freely). This instruction overrides SPIN, SSTOP, SHIZ, and has the same priority as HSTOP.

Example:

X0

HHIZ

109

9. Communication parameters

The controller has a USB and RS-485 interfaces, both have the same access to registers and bit

operands. The USB interface is a virtual COM port (VCP), it is mainly intended for configuring of the

controller and recording of user program, therefore it has fixed communication parameters: Modbus

ASCII, ID 1, 115200 baud, 7, Even, 1. Parameter variations for RS-485 are indicated inAppendix A

in the section ³RS-485 interface communication paramete rs´.

9.1. Change communication settings for RS-485

6HW�WKH�UHTXLUHG�FRPPXQLFDWLRQ�SDUDPHWHUV�DFFRUGLQJ�WR�WKH�VHFWLRQ�³RS-485 interface

communication parameters´�RI�Appendix A. For the changes to take effect, reboot the device. This

can be done by turning the power off and on or by setting the Coils 8101h (Reset) object.

Example:

It is necessary to change communication parameters to the next: Modbus RTU, ID 100, 128000

baud, 8, Odd, 1. There are all possible combinations of communication parameters in the Appendix A

Action sequence:

1) Writing the value 100d into the Holding Registers 8103h ± change device address (ID) to

100.

2) Setting Coils 8100h ± protocol selection RTU.

3) Writing the value 128000d into the Holding Registers 8100h ± setting data transfer speed

128000 baud.

4) Writing the value 1d into the Holding Registers 8102h ± parity type selection Odd.

5) Setting Coils 8101h ± reboot the controller.

9.2. Modbus Protocol

It is strongly recommended to read the protocol specification on the site. http://modbus.org/.

Supported protocol functions are presented in the table below:

SMSD-1.5Mus

user manual

110

Function Code

D
a
ta

 a
cc

es
s

Discrete Inputs

1
-b

it

Read Discrete Inputs 02(02h)

Coils Read Coils 01(01h)

Write Single Coil 05(05h)

Write Multiple Coils 15(0Fh)

Input Registers

1
6

-b
it

Read Input Register 04(04h)

Holding Registers Read Holding Registers 03(03h)

Write Single Register 06(06h)

Write Multiple Registers 16(10h)

Read/Write Multiple Registers 23(17h)

Mask Write Register 22(16h)

Protocol error codes are presented in the table below:

Error code Description

01(01h) ILLEGAL FUNCTION

The function code cannot be processed.

02(02h) ILLEGAL DATA ADDRESS

The address of the register specified in the request is not available.

03(03h) ILLEGAL DATA VALUE

The value contained in the request data field is invalid.

04(04h) SERVER DEVICE FAILURE

An unrecoverable error occurred while performing the requested action.

Error codes recorded during the processing of protocol packets are presented in the tables below.

Address Type Size Description

E003h Input Registers 16-bit Error code while processing Modbus frame.

E003h Coils 1-bit Flag of an error during the exchange via Modbus protocol.

111

Error code Description

0001h Memory allocation error.

0002h Checksum error.

0003h An error occurred while receiving and processing a broadcast packet.

0004h Frame size mismatch.

0005h Function error (0Fh). Not all bits have been overwritten..

0006h Function error (10h). Not all registers have been overwritten..

0007h Function error (17h). Not all registers have been overwritten..

0008h Lost frame due to DMA error.

0009h Lost frame due to overflowing frame processing stack.

If the device is the end in the RS-485 communication line, then connect a terminal resistor by turning

on the toggle switch next to the RS-485 connector, as shown in the Fig. 31.

SMSD-1.5Mus

user manual

112

10. Setting the real time clock

The controller has a real-time clock, which is powered by an internal source (CR2032 battery),

which ensures the operation of the clock while the main power is off. The same battery is used for the

operation of non-volatile registers and safety settings of the controller communication parameters. The

indicator BAT lights up in case of the absence or soon failure of the internal CR2032 battery. The real-

time clock can be set via the user program using the TWR instruction or via the Modbus protocol in the

following order:

1) Disable auto overwrite of the +ROGLQJ�5HJLVWHUV�����K«����K�by resetting of the Coils

8110h.

2) Recording the current time value into the Holding Registers 8110h, 8111h, 8112h seconds,

minutes, hours, respectively (refer to the section ©Clock settingª��in the ©Appendix A.

Registers of the controllerª).

3) Set a new time value by setting the Coils 8111h.

4) Enable auto overwrite of the HolGLQJ�5HJLVWHUV�����K«����K�by setting of the Coils

8110h.

113

11. A user program - loading to and reading from the controller

11.1. User program uploading/downloading procedure

The controller has two areas for downloading programs: general purpose and special.

The general purpose area is intended for loading a user program with maximum length up to

59752 lines (the area is empty by default). The maximum length of the special area is 1926 lines. This

area contains a program for controlling the speed of a stepper motor using a potentiometer, buttons and

encoder. If necessary, this area can be overwritten.

Below is an example of a user program. The list of the registers involved in these operations is

given in ©Appendix A. Registers of the controller Appendix Aª in the section ©Working with ROMª.

User program in LD form:

X0

ZCP K1024 K2048@A0 D354 M0

M0

Y0

M1

Y1

M2

Y2

END

Fig. 32 ± User program

The user program converted into IL:

LD X0 ;entry condition for zone comparison operation

ZCP K1024 K2048@A0 D354 M0 ;zone comparison, determining the position of the; po-

tentiometer SPEED (2)

LD M0 ;if the value in the register D354 is less than 1024,

then Y0 is turned ON, otherwise ± turned off

OUT Y0
LD M1 ;if the value in the register D354 is greater than or

equal to 1024 and less than or equal to the sum of

2048 and the value of A0 then Y1 is turned on, other-

wise ± turned off.

OUT Y1
LD M2 if the value in the register D354 is greater than the sum

of 2048 and the value of A0, then Y2 is turned on,

OUT Y2
END ;end of the program

SMSD-1.5Mus

user manual

114

All supported by the controller instruction codes are presented in the ©Appendix B. List of

instructionsª. Use it when assembling a user program or use the supplied PC software for programming

the controller.

1) Make sure that the controller is in the STOP mode. Changing the user program in the RUN

mode is impossible. To check the RUN/STOP state of the controller, read the value of

Discrete Inputs F001h. It is reset in the STOP mode, it is set in the RUN mode.

2) To read the program from the controller: check if it is not read-protected before reading a

program from the controller. There are two read-protection objects in the controller: Coils

F001h (for protection of a user program) and F002h (for protection of a service program). It

is impossible to read the program if the protection is set for the program. If the protection is

not set, go to the step 5 to read the program from the controller.

3) Before writing a new program to the controller it is necessary to erase the previous one. Set

the Coils F003h to erase the user program or Coils F004h to erase a service program. In this

example the main program is writing, so it is necessary to set the Coils F003h.

4) After setting the Coils F003h (or F004h), wait until Discrete Inputs F000h is reset, this will

indicate the completion of the erase procedure and the readiness of the ROM for further

work.

5) After erasing previous program it is necessary to set the operation type ± read or write. To

write a new program set the Coils F005h, to read the program from the controller ± reset the

Coils F005h.

6) Select the type of program. For the user program reset the Coils F006h, for the service

program set the Coils F006h.

7) Set the line number for writing/reading the program using Holding Registers F100h.

Numbering starts from 0. For the read operation go to step 10. To write a new program set

its value 0.

8) Fill the download sector F300h ... F314 according to the following example:

115

40h 00h

F300h F314h

21 registers = 42 bytes

In
st

ru
ct

io
n

 c
o

d
e

T
yp

e
 o

f
th

e
 f

ir
st

 o
p

e
ra

n
d

T
h

e
 f

ir
st

 o
p

e
ra

n
d

 v
a

lu
e

In
d

e
x

ty
p

e
 o

f
 t

h
e

 f
ir

st
 o

p
e

ra
n

d

V
a

lu
e

 o
f

 t
h

e
 f

ir
st

 in
d

e
x

o
p

e
ra

n
d

T
yp

e
 o

f
 t

h
e

 s
e

co
n

d
 o

p
e

ra
n

d

T
h

e
 s

e
co

n
d

 o
p

e
ra

n
d

 v
a

lu
e

In
d

e
x

ty
p

e
 o

f
 t

h
e

 s
e

co
n

d
 o

p
e

ra
n

d

V
a

lu
e

 o
f

 t
h

e
 s

e
co

n
d

 in
d

e
x

o
p

e
ra

n
d

T
yp

e
 o

f
 t

h
e

th

ir
d

 o
p

e
ra

n
d

T
h

e
 t

h
ir

d
 o

p
e

ra
n

d
 v

a
lu

e

In
d

e
x

ty
p

e
 o

f
 t

h
e

 t
h

ir
d

 o
p

e
ra

n
d

V
a

lu
e

 o
f

 t
h

e
 t

h
ir

d
 in

d
e

x
o

p
e

ra
n

d

T
yp

e
 o

f
 t

h
e

 f
o

u
rt

h
 o

p
e

ra
n

d

T
h

e
 f

o
u

rt
h

 o
p

e
ra

n
d

 v
a

lu
e

In
d

e
x

ty
p

e
 o

f
 t

h
e

fo

u
rt

h
 o

p
e

ra
n

d

V
a

lu
e

 o
f

 t
h

e

fo

u
rt

h
 in

d
e

x
o

p
e

ra
n

d

61h 58h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00hlower byte

high byte

1 2 3 4Code

LD X0

4
0

6
1

h

µ;
¶�
=

 0
0

5
8

h

0
0

0
0

0
0

0
0

h

LD
X0

Fig. 33 ± Projecting an instruction with operands into the address space of the Modbus protocol.

9) Setting the Coils F000h starts the operation parameterized in Coils F005h and F006h. In

this example - writing the first line to the controller ROM. Thus, repeating steps 7 - 9,

moving down the program to the end, incrementing Holding Registers F100h, the program

is recorded in the controller.

As an example, below is the formation of the downloading sector from the second line of

the program.

SMSD-1.5Mus

user manual

116

22h 00h 04h 00h 00h 00h 00h 08h 00h 00h 00h 00h 01h 00h 00h 00h 00h 00h 00h 00h 00h

F300h F314h

21 registers = 42 bytes

In
st

ru
ct

io
n

 c
o

d
e

T
yp

e
 o

f
th

e
 f

ir
st

 o
p

e
ra

n
d

V
a

lu
e

 o
f

th
e

 f
ir

st
 o

p
e

ra
n

d

In
d

e
x

ty
p

e
 o

f
th

e
 f

ir
st

 o
p

e
ra

n
d

V
a

lu
e

 o
f

 t
h

e
 f

ir
st

 in
d

e
x

o
p

e
ra

n
d

T
yp

e
 o

f
th

e
 s

e
co

n
d

 o
p

e
ra

n
d

V
a

lu
e

 o
f

th
e

 s
e

co
n

d
 o

p
e

ra
n

d

In
d

e
x

ty
p

e
 o

f
th

e
 s

e
co

n
d

 o
p

e
ra

n
d

V
a

lu
e

 o
f

 t
h

e
 s

e
co

n
d

 in
d

e
x

o
p

e
ra

n
d

T
yp

e
 o

f
th

e
 t

h
ir

d
 o

p
e

ra
n

d

V
a

lu
e

 o
f

th
e

 t
h

ir
d

 o
p

e
ra

n
d

In
d

e
x

ty
p

e
 o

f
th

e
 t

h
ir

d
 o

p
e

ra
n

d

V
a

lu
e

 o
f

 t
h

e
 t

h
ir

d
 in

d
e

x
o

p
e

ra
n

d

T
yp

e
 o

f
th

e
 f

o
u

rt
h

 o
p

e
ra

n
d

V
a

lu
e

 o
f

th
e

 f
o

u
rt

h
 o

p
e

ra
n

d

In
d

e
x

ty
p

e
 o

f
th

e
 f

o
u

rt
h

 o
p

e
ra

n
d

V
a

lu
e

 o
f

 t
h

e
 f

o
u

rt
h

 in
d

e
x

o
p

e
ra

n
d

02h 4Bh 00h 00h 00h 00h 4Bh 00h 00h 41h 00h 44h 62h 00h 00h 00h 4Dh 00h 00h 00h 00hLower byte

High byte

1 2 3 4Code

ZCP K1024 K2048@A0 D354 M0

2
2

0
2

h

µ.
¶�
=

 0
0

4
B

h

0
0

0
0

0
4

0
0

h

ZCP
K1024

K2048@A0

D354

M
0

µ.
¶�
=

 0
0

4
B

h

0
0

0
0

0
8

0
0

h

µ'
¶�
=

 0
0

4
4

h

0
0

0
0

0
1

6
2

h

µ0
¶�
=

 0
0

4
D

h

0
0

0
0

0
0

0
0

h

µ$
¶=

0
0

4
1

h

0
0
0
0
h

Fig. 34 ± Projecting an instruction with operands into the address space of the Modbus protocol.

10) To read the program, the opposite operation is needed. The difference is that the upload

sector has the address Input Registers F200h ... F214h and the parameterized operation is

performed first by setting Coils F000h, and then reading the sector and then incrementing

the line number until the END instruction arrives.

117

The operand types codes are shown in the table below:

Operand Code

K 4Bh

H 48h

F 46h

X 58h

Y 59h

M 4Dh

T 54h

C 43h

A 41h

B 42h

D 44h

P 50h

I 49h

11.2. Block uploading/downloading of a user program

A user program can be read and write faster if use block uploading/downloading. The proce-

dure of the block uploading/downloading of a user program is the similar to the section ©User program

uploading/downloading procedureª, but with the following differences:

To write a user program

Start of the procedure Use Coils F007h instead of F000h.

Downloading sector Download sector addresses are Holdings Registers F401h«F4FFh, the
sector may contain from 1 up to 15 command lines (instructions). The
number of lines to be written is indicated in Holdings Registers F400h.

To read a user program

Start of the procedure Use Coils F007h instead of F000h.

Uploading sector Upload sector addresses are Holdings Registers F401h«F4FFh, the sec-
tor may contain from 1 up to 15 command lines (instructions). The num-
ber of lines to be read is indicated in Holdings Registers F400h. When the
procedure is completed, F400h will display the actual number of lines
read..

Command line 34 bytes are allocated for each command line in the download-
ing/uploading sector.

119

Error code Description

0001h Read protection for the main program has not been set.

0002h Read protection for the service program has not been set.

0003h Failed to erase the main program sector.

0004h Failed to erase the service program sector.

0005h Failed to write the instruction to the main program.

0006h Failed to write the instruction to the service program.

SMSD-1.5Mus

user manual

120

12. Speed control mode

This mode is intended for controlling the rotation speed of a stepper motor using the built-in

potentiometer ³63(('´������EXWWRQV�RU�DQ�HQFRGHU�

To enter the speed control mode, set the controller to the STOP state, then use the mode select

button to set the SPD mode. Assemble and connect to the controller the circuit shown in the Fig. 35 ±

Connection of control elements.

Fig. 35 ± Connection of control elements

121

Attention

Turning the controller to the RUN mode while SLOW STOP and HARD
STOP switches are closed and ENABLE switch is open, will cause the

motor rotation��7R�DYRLG�XQFRQWUROOHG�URWDWLRQ��WXUQ�WKH�³63(('´�SRWHn-
tiometer to the minimum position or change the position of any of the
above switches to the opposite one indicated in the diagram.

In the RUN state, select the required microstepping by pressing the corresponding button. The

method of the speed control is selected by the IN5 input, more details in the table below.

LED indication

287�«�
Microstepping

LED indication

287��«��
Speed control source

OUT0 1/1 Both are turned
off

The speed is adjusted by the potenti-
ometer ©63(('ª�

OUT1 1/2

OUT2 1/4 OUT10 The speed is adjusted by the buttons
³,QFUHDVH´�DQG�³'HFUHDVH´� (IN0 and
IN1). The speed change increment
is set by the potentiometer
©63(('ª.

OUT3 1/8

OUT4 1/16

OUT5 1/32

OUT6 1/128 OUT11 The speed is adjusted by an encoder,
connected to the inputs IN0 and IN1.
The changing speed increment for
one encoder event is set by the po-
WHQWLRPHWHU�©63(('ª�

OUT7 1/256

When the speed change lock is turned on, the controller stops responding to the speed controls.

This option is designed to prevent accidental mechanical impact on the potentiometer, encoder, but-

tons.

DIR ± changes the motor rotation direction.

ENABLE ± controls energizing of stepper motor phases.

öï�ò���ýþ ± opening of the circuit immediately stops and turns the motor into the holding

mode. The holding current is 50% of the work current. The value of work current is set by the potenti-

ometer (1) from minimum to maximum value for the model.

�úý����ýþ ± opening of the circuit causes the motor stop according to the deceleration set

by the potentiometer (0) (acceleration value is also set by the potentiometer (0)).

The code of the service program is given in the Appendix D. Code of the service program

³6WHSSHU�0RWRU�6SHHG�&RQWURO´. The code can be modified to meet specific requirements.

SMSD-1.5Mus

user manual

122

13. Step/Dir pulse position control mode

The controller provides pulse position control mode by pulse step signals STEP (the inputs

STEP +, STEP-) and direction signal DIR (the inputs DIR +, DIR. The ENABLE + input controls the

the motor phases energizing. INVERT_ENABLE + inverts the ENABLE signal. The FAULT output

indicates alarm states: overcurrent and overheating, or missing steps due to these two reasons (Fig. 2).

To turn the controller to pulse position control mode, first turn it to the STOP state and then

use the mode select button to switch to DRV mode. In this state the motor phases are de-energized.

Select necessary microstepping, work current and holding current. (the transition to the mode is carried

out after one-second after the detection of the last Step signal on the leading edge of the pulse).

Microstepping is set by the SPEED potentiometer, the values of work current ± by the potenti-

ometer (0), holding current ± by the potentiometer (1). Set parameters are displayed on the LED panel,

more details in the tables below:

OUT0 OUT1 OUT2 OUT3 Operation current

OUT4 OUT5 OUT6 OUT7 Holding current

SMSD-1.5Modbus ver.3 SMSD-4.2Modbus SMSD-8.0Modbus

� ����f: �����f: �����f:

� ����f: �����f: �����f:

� � ����f: �����f: �����f:

� ����f: �����f: �����f:

� � ����f: �����f: �����f:

� � ����f: �����f: �����f:

� � � ����f: �����f: �����f:

� ����f: �����f: �����f:

� � ����f: �����f: �����f:

� � �����f: �����f: �����f:

� � � �����f: �����f: �����f:

� � �����f: �����f: �����f:

� � � �����f: �����f: �����f:

� � � �����f: �����f: �����f:

� � � � �����f: �����f: ������f:

123

LED indication ,1�«� Microstepping

IN0 1/1

IN1 1/2

IN2 1/4

IN3 1/8

IN4 1/16

IN5 1/32

IN6 1/128

IN7 1/256

When the controller is in the RUN state, the above parameters are fixed and saved after the

power is off. Use the inputs and outputs of the controller according to the pin assignment table (Fig. 2).

SMSD-1.5Mus

user manual

124

14. User program control mode

The controller provides control mode according a user program and control by Modbus com-

mands. The controller indicates this control mode by LED indicator PROG. A user program can be

sent to the controller memory when the controller is in the STOP state. After turning to the RUN state

the controller starts executing of the user program. It is also possible to control the state of the control-

ler, user program, physical outputs, stepper motor driver and monitor the status of physical inputs via

RS-485 interface using Modbus protocol.

Examples of user programs that demonstrate the basic functionality of the controller are de-

scribed in the Appendix C. Examples of user programs.

125

Appendix A. Registers of the controller

Address Type Size Description

RS-485 interface communication parameters

0x8100 Coils - Communications protocol selection
Reset ² Modbus ASCII.
Set ² Modbus RTU.
Changes take effect after the controller reboot.

0x8100 Holding
Registers

32-bit Baud rate.
Allowable values: 110, 300, 600, 1200, 2400, 4800, 9600, 14400,
19200, 38400, 57600, 115200, 128000, 256000.
Changes take effect after the controller reboot..

0x8102 Holding
Registers

16-bit Parity:
0 ± NONE
1 ± ODD
2 ± EVEN

The following data transfer parameters are available.:

Modbus RTU:

� 8-bit / EVEN / 1 STOP

� 8-bit / ODD / 1 STOP

� 8-bit / NONE / 2 STOP

Modbus ASCII:

� 7bit / EVEN / 1 STOP

� 7bit / ODD / 1 STOP

Stop bit parameters are set automatically.

0x8103 Holding
Registers

16-bit ID of the controller (device address).
Allowable values: 1...247.

Clock setting

0x8110 Holding
Registers

16-bit Seconds.
Allowable values: 0...59.

0x8111 Holding
Registers

16-bit Minutes.
Valid values: 0...59.

0x8112 Holding
Registers

16-bit Hours.
Valid values: 0...23.

0x8110 Coils - Automatic registers update.
Set ² in registers 0x8110 - 0x8112 actual value of time.
Reset ² automatic updating of data is disabled, recording of user
values is allowed.

0x8111 Coils - Setting the object sets the time from the registers 0x8110 - 0x8112.
It is allowed to turn on automatic updating again after setting the
object.

SMSD-1.5Mus

user manual

126

Address Type Size Description

Date setting

0x8113 Holdings
Registers

16-bit Day.
Valid values���«��

0x8114 Holdings
Registers

16-bit Month
Valid values���«��

0x8115 Holdings
Registers

16-bit Year
Valid values����«��

Setting the date is similar to setting the time with a preliminary reset of the
Coils 8110h (refer to the section 10).

0x8112 Coils - Setting the object sets the date from the registers 0x8110 - 0x8112.
It is allowed to turn on automatic updating again after setting the
object.

Additional

0x8101 Coils - Setting the object causes a reboot of the controller.

0xF001 Holdings
Registers

16-bit Controller operating mode: user program (PROG), service program
(SPD), driver mode (DRV).
Changing the operating mode of the controller is possible only in
the STOP state.
0 - User program.
1 - Service program.
2 - Driver mode.

Working with ROM

0xF001 Discrete
Inputs

- RUN/STOP toggle switch state. ROM operations are not possible
when the controller is in the RUN state.
Reset ²STOP state.
Set ²RUN state.

0xF000 Discrete
Inputs

- Indication of ROM state.
Reset ² ROM is ready for operation.
Set ² ROM is busy.

0xF000 Coils - Control object for line-by-line reading/writing of a user program.
Setting the object starts the operation parameterized in objects
0xF005 and 0xF006.

127

Address Type Size Description

0xF001 Coils - Read protection of the main (user) program.
Set ² not protected.
Reset ² read protection is set. Attempting to set the object causes
erasing of the main program.

0xF002 Coils - Read protection of the service program.
Set ² not protected.
Reset ² read protection is set. Attempting to set the object causes
erasing of the service program.

0xF003 Coils - Erasing the main program.
Setting the object starts the erase procedure of the main program.
Resetting the object is ignored.

0xF004 Coils - Erasing the service program.
Setting the object starts the erase procedure of the service program.
Resetting the object is ignored.

0xF005 Coils - Operation type selection.
Reset ² read.
Set ² write.

0xF006 Coils - Program selection (main/service)
Reset ² main.
Set ² service.

0xF007 Coils - Control object for block reading/writing of a user program (refer to
the section 11.2). Setting the object starts the operation
parameterized in objects 0xF005 and 0xF006.

0xF100 Holding
Registers

16-bit The line number in the program to be read or overwritten (0 ...
59753 - for the main program, 0 ... 1927 - for the service).

Line-by-line ROM reading sector

0xF200 Input
Registers

16-bit Instruction code

0xF201 Input
Registers

16-bit Type of the first operand

0xF202 Input
Registers

32-bit Value of the first operand

0xF204 Input
Registers

16-bit Index type of the first operand

0xF205 Input
Registers

16-bit Value of the first index operand

0xF206 Input
Registers

16-bit Type of the second operand

0xF207 Input
Registers

32-bit Value of the second operand

SMSD-1.5Mus

user manual

128

Address Type Size Description

0xF209 Input
Registers

16-bit Index type of the second operand

0xF20A Input
Registers

16-bit Value of the second index operand

0xF20B Input
Registers

16-bit Type of the third operand

0xF20C Input
Registers

32-bit Value of the third operand

0xF20E Input
Registers

16-bit Index type of the third operand

0xF20F Input
Registers

16-bit Value of the third index operand

0xF210 Input
Registers

16-bit Type of the fourth operand

0xF211 Input
Registers

32-bit Value of the fourth operand

0xF213 Input
Registers

16-bit Index type of the fourth operand

0xF214 Input
Registers

16-bit Value of the fourth index operand

Line-by-line ROM writing sector

0xF300 Holding
Registers

16-bit Instruction code

0xF301 Holding
Registers

16-bit Type of the first operand

0xF302 Holding
Registers

32-bit Value of the first operand

0xF304 Holding
Registers

16-bit Index type of the first operand

0xF305 Holding
Registers

16-bit Value of the first index operand

0xF306 Holding
Registers

16-bit Type of the second operand

0xF307 Holding
Registers

32-bit Value of the second operand

0xF309 Holding
Registers

16-bit Index type of the second operand

129

Address Type Size Description

0xF30A Holding
Registers

16-bit Value of the second index operand

0xF30B Holding
Registers

16-bit Type of the third operand

0xF30C Holding
Registers

32-bit Value of the third operand

0xF30E Holding
Registers

16-bit Index type of the third operand

0xF30F Holding
Registers

16-bit Value of the third index operand

0xF310 Holding
Registers

16-bit Type of the fourth operand

0xF311 Holding
Registers

32-bit Value of the fourth operand

0xF313 Holding
Registers

16-bit Index type of the fourth operand

0xF314 Holding
Registers

16-bit Value of the fourth index operand

Reading/writing sector for block uploading/downloading of a user program
(15 command lines, 17 registers per line)

Line 1 of the reading/writing sector

0xF401 Holding
Registers

16-bit Instruction code of the line 1 of the reading/writing sector

Operand 1 of the line 1 of the reading/writing sector

0xF402 Holding
Registers

32-bit Value of the operand 1 of the line 1 of the reading/writing sector

0xF404 Holding
Registers

16-bit Value of the operand 1 index of the line 1 of the reading/writing
sector

0xF405 Holding
Registers

16-bit 8 bits LSB ± Operand 1 type ± line 1 of the reading/writing sector
8 bits MSB ± Index type of the operand 1 of the reading/writing
sector

.

.

.

.

.

.

.

.

.

.

.

.

Operand 4 of the line 1 of the reading/writing sector

0xF40E Holding
Registers

32-bit Value of the operand 4 of the line 1 of the reading/writing sector

SMSD-1.5Mus

user manual

130

Address Type Size Description

0xF404 Holding
Registers

16-bit Value of the operand 4 index of the line 1 of the reading/writing
sector

0xF405 Holding
Registers

16-bit 8 bits LSB ± Operand 4 type ± line 1 of the reading/writing sector
8 bits MSB ± Index type of the operand 4 of the reading/writing
sector

.

.

.

.

.

.

.

.

.

.

.

.

Line 15 of the reading/writing sector

0xF4EF Holding
Registers

16-bit Instruction code of the line 15 of the reading/writing sector

Operand 1 of the line 15 of the reading/writing sector

0xF4F0 Holding
Registers

32-bit Value of the operand 1 of the line 15 of the reading/writing sector

0xF4F2 Holding
Registers

16-bit Value of the operand 1 index of the line 15 of the reading/writing
sector

0xF4F3 Holding
Registers

16-bit 8 bits LSB ± Operand 1 type ± line 15 of the reading/writing sector
8 bits MSB ± Index type of the operand 1 of the reading/writing
sector

.

.

.

.

.

.

.

.

.

.

.

.

Operand 4 of the line 15 of the reading/writing sector

0xF4FC Holding
Registers

32-bit Value of the operand 4 of the line 15 of the reading/writing sector

0xF4FE Holding
Registers

16-bit Value of the operand 4 index of the line 15 of the reading/writing
sector

0xF4FF Holding
Registers

16-bit 8 bits LSB ± Operand 4 type ± line 15 of the reading/writing sector
8 bits MSB ± Index type of the operand 4 of the reading/writing
sector.

Errors

0xE000 Coils - Setting the object resets all types of errors that are valid for the
current state of the controller.

0xE000 Discrete
Inputs

- General error. It is always set when at least one of the types of
errors from 0xE001 to 0xE004 appears.

0xE001 Discrete
Inputs

- The set state of the object indicates a discharged CR2032 battery
inside the controller. Replacement is required.

131

Address Type Size Description

0xE002 Discrete
Inputs

- The set state of the object indicates an error during ROM
operation. The error code is specified in the Input Registers
0xE002.

0xE003 Discrete
Inputs

- The set state of the object indicates an error during the exchange
process using the Modbus protocol. The error code is specified in
the Input Registers 0xE003.

0xE004 Discrete
Inputs

- The set state of the object indicates an error during the user
program execution. The error code is specified in the Input
Registers 0xE004. The caused an error line of the program is
indicted in 0xE084.

0xE002 Input
Registers

16-bit ROM operation error code.

0xE003 Input
Registers

16-bit Modbus protocol error code.

0xE004 Input
Registers

16-bit User program error code.

0xE084 Input
Registers

16-bit The number of a line, caused error in the user program (numbering
starts from 0, see description of the Coils 0xF100 above).

Access to program operands

Discrete outputs

0x1000 Discrete
Inputs

- Discrete output Y0

0x1001 Discrete
Inputs

- Discrete output Y1

.

.

.

.

.

.

.

.

.

.

.

.

0x107F Discrete
Inputs

- Discrete output Y177

State of discrete physical inputs

0x2000 Discrete
Inputs

- Discrete input X0

.

.

.

.

.

.

.

.

.

.

.

.

0x2007 Discrete
Inputs

- Discrete input X7

SMSD-1.5Mus

user manual

132

Address Type Size Description

Discrete inputs

0x2008 Coils - Discrete input X10

0x2009 Coils - Discrete input X11
.

.

.

.

.

.

.

.

.

.

.

.

0x207F Coils - Discrete input X177

General purpose data registers D192...D255

0x3000 Input
Registers

16-bit Register D192

0x3001 Input
Registers

16-bit Register D193

.

.

.

.

.

.

.

.

.

.

.

.

0x303F Input
Registers

16-bit Register D255

General purpose data registers D256...D319

0x4000 Holding
Registers

16-bit Register D256

0x4001 Holding
Registers

16-bit Register D257

.

.

.

.

.

.

.

.

.

.

.

.

0x403F Holding
Registers

16-bit Register D319

Non-volatile data registers D320...D327

0x3100 Input
Registers

16-bit Register D320

.

.

.

.

.

.

.

.

.

.

.

.

0x3107 Input
Registers

16-bit Register D327

Non-volatile data registers D328...335

0x4100 Holding
Registers

16-bit Register D328

133

Address Type Size Description
.

.

.

.

.

.

.

.

.

.

.

.

0x4107 Holding
Registers

16-bit Register D335

Hardware counters

0x4200 Holding
Registers

32-bit Counter C64

0x4202 Holding
Registers

32-bit Counter C65

Analog-to-digital converters

0x3200 Input
Registers

16-bit Register D352��GDWD�IURP�WKH�SRWHQWLRPHWHU�©0ª

0x3201 Input
Registers

16-bit Register D353��GDWD�IURP�WKH�SRWHQWLRPHWHU�©1ª

0x3202 Input
Registers

16-bit Register D354��GDWD�IURP�WKH�SRWHQWLRPHWHU�©63(('ª

Hardware and software versions

0x8001 Input
Registers

16-bit Major hardware version

0x8002 Input
Registers

16-bit Minor hardware version

0x8003 Input
Registers

16-bit Major software version

0x8004 Input
Registers

16-bit Minor software version

0x8005 Input
Registers

16-bit Major bootloader version

0x8006 Input
Registers

16-bit Minor bootloader version

Stepper motor control

0x5000 Holding
Registers

32-bit Register D357 ± SPEED.

0x5002 Holding
Registers

32-bit Register D359 ± MIN_SPEED.

0x5004 Holding
Registers

16-bit Register D361 ± ACC.

SMSD-1.5Mus

user manual

134

Address Type Size Description

0x5005 Holding
Registers

16-bit Register D362 ± DEC.

0x5006 Holding
Registers

32-bit Register D363 ± ABS.

0x5008 Input
Registers

16-bit Register D365 ± U_POS.

0x5009 Holding
Registers

16-bit Register D366 ± U_STEP.

0x500A Holding
Registers

16-bit Register D374 ± DIR.

0x500A Coils - Register D374 ± DIR.

0x500B Holding
Registers

32-bit Register D377 ± FS_SPD_THR.

0x500D Holding
Registers

16-bit Register D379 ± FS_SW_EN.

0x500D Coils - Register D379 ± FS_SW_EN.

0x500E Holding
Registers

32-bit Register D372 ± TARGET_POS.

0x5010 Holding
Registers

16-bit Register D376 ± CMD.

0x5011 Holding
Registers

16-bit Register D375 ± SW_INPUT.

0x5012 Holding
Registers

16-bit Register D367 ± ACC_CUR.

0x5013 Holding
Registers

16-bit Register D368 ± DEC_CUR.

0x5014 Holding
Registers

16-bit Register D369 ± RUN_CUR.

0x5015 Holding
Registers

16-bit Register D370 ± HOLD_CUR.

0x5016 Holding
Registers

16-bit Register D382 ± CMIN_SPD_EN.

0x5017 Holding
Registers

16-bit Register D380 ± ERROR_SET_HIZ.

0x5017 Coils - TERMAL_ERROR_SET_HIZ

0x5018 Coils - SOFTWARE_ERROR_SET_HIZ

0x5019 Coils - CMD_ERROR_SET_HIZ

135

Address Type Size Description

0x501A Coils - DATA_ERROR_SET_HIZ

0x5027 Holding
Registers

16-bit Register D381 ± ERROR_CODE.

0x5027 Coils - TERMAL_ERROR_OVER_CURRENT

0x5028 Coils - SOFT_ERROR

0x5029 Coils - CMD_ERROR

0x502A Coils - DATA_ERROR

0x502F Coils - OVLO/UVLO_INTERNAL_PROTECTION_ERROR

(SMSD-4.2Modbus and SMSD-8.0Modbus)

0x5030 Coils - VS_OUT_OF_RANGE_ERROR

0x5037 Input
Registers

16-bit Register D371 ± MOTOR_STATUS.

0x5037 Discrete
Inputs

- HIZ

0x5038 Discrete
Inputs

- STOP

0x5039 Discrete
Inputs

- ACCELERATING

0x503A Discrete
Inputs

- DECELERATING

0x503B Discrete
Inputs

- STEADY

0x503C Discrete
Inputs

- BUSY_MOVE

0x503D Discrete
Inputs

- BUSY_RUN

0x5048 Holdings
Registers

32-bit Register D385 ± EMERGENCY_DEC.

0x5100 Coils - Instruction SPIN ± APPLY_CMD.

0x5101 Coils - Instruction TORQUE ± APPLY_CURRENT.

0x5102 Coils - Instruction HSTOP ± HARD_STOP.

0x5103 Coils - Instruction HHIZ ± HARD_HIZ.

0x5104 Coils - Instruction SSTOP ± SLOW_STOP.

0x5105 Coils - Instruction SHIZ ± SLOW_HIZ.

SMSD-1.5Mus

user manual

136

Appendix B. List of instructions

Instruction

Description

API Code

Basic instructions

LD 0x4061 Normally open contact

LDI 0x4001 Normally closed contact

AND 0x4065 Series connection - normally open contact (logic AND)

ANI 0x4005 Series connection - normally closed contact (logic NAND)

OR 0x4066 Parallel connection ± normally open contact (logic OR)

ORI 0x4046 Parallel connection ± normally closed contact (logic NOR)

LDP 0x4821 Beginning of logical expression with rising edge polling (impulse)

LDF 0x4841 Beginning of a logical expression with polling on a falling edge (impulse)

ANDP 0x4825 ©$1'ª��ZLWK�a rising edge polling (impulse)

ANDF 0x4845 ©$1'ª�ZLWK�a falling edge polling (impulse)

ORP 0x4806 ©25ª�ZLWK�ULVLQJ�HGJH�SROOLQJ��LPSXOVH�

ORF 0x4826 ©25ª�ZLWK�IDOOLQJ�HGJH�SROOLQJ��LPSXOVH�

TMR 0x2014 Timer (16-bit)

CNT 0x2015 Counter (16-bit)

DCNT 0x3015 Counter (32-bit)

INV 0x4016 Inversion - replacing the result of logical connections with the opposite

ANB 0x4007 ©$1'ª-block: series connection of blocks

ORB 0x4008 ©25ª-block: parallel connection of blocks

MPS 0x4009 Offset down the stack

MRD 0x402A Read value from the stack

MPP 0x400A Exit from the stack

SET 0x2024 7XUQLQJ�RQ�ODWFKHG�RXWSXW��VHWWLQJ�WKH�ORJLFDO�³�´�

RST 0x2004 Reset of the operand state

OUT 0x2002 Output coil - assignment to the output of the result of a logical expression

FEND 0x6003 End of main program

NOP 0x8011 Empty line in the program

137

P 0x6051 Addressing a jump point in a program or subprogram

I 0x6031 Addressing of an interruption point

END 0x6023 End of program

Instructions for loops, transitions, subprogram

CJ 0x200D Conditional jump - go to the specified program line

CJP 0x280D Conditional jump - go to the specified program line with rising edge poll-

ing (impulse)

CALL 0x200E Calling subprogram

CALLP 0x280E Calling subprogram with rising edge polling (impulse)

SRET 0x600F End of subprogram

FOR 0x400B Start of a loop FOR-NEXT

NEXT 0x400C End of a loop FOR-NEXT

Interruptions

IRET 0x6010 End of interruption handler

EI 0x8012 Global interruptions enabling

DI 0x8013 Global interruptions disabling

Data transfer and comparison

CMP 0x2201 Comparison of numerical data

CMPP 0x2A01 Comparison of numerical data with rising edge polling (impulse)

DCMP 0x3201 Comparison of numerical data, 32-bit instruction

DCMPP 0x3A01 Comparison of numerical data, 32-bit instruction with rising edge polling

(impulse)

ZCP 0x2202 Zone comparison of numerical data

ZCPP 0x2A02 Zone comparison of numerical data with rising edge polling (impulse)

DZCP 0x3202 Zone comparison of numerical data, 32-bit instruction

DZCPP 0x3A02 Zone comparison of numerical data, 32-bit instruction with rising edge

polling (impulse)

MOV 0x2018 Data transfer

MOVP 0x2818 Data transfer with rising edge polling (impulse)

DMOV 0x3018 Data transfer, 32-bit instruction

DMOVP 0x3818 Data transfer, 32-bit instruction with rising edge polling (impulse)

SMSD-1.5Mus

user manual

138

BMOV 0x2038 Block data transfer

BMOVP 0x2838 Block data transfer with rising edge polling (impulse)

DBMOV 0x3038 Block data transfer, 32-bit instruction

DBMOVP 0x3838 Block data transfer, 32-bit instruction with rising edge polling (impulse)

FMOV 0x2058 Transferring data to multiple addresses

FMOVP 0x2858 Transferring data to multiple addresses with rising edge polling (impulse)

DFMOV 0x3058 Transferring data to multiple addresses, 32-bit instruction

DFMOVP 0x3858 Transferring data to multiple addresses, 32-bit instruction with rising edge

polling (impulse)

XCH 0x220A Data exchange

XCHP 0x2A0A Data exchange with rising edge polling (impulse)

DXCH 0x320A Data exchange, 32-bit instruction

DXCHP 0x3A0A Data exchange, 32-bit instruction with rising edge polling (impulse)

Arithmetic operations (integers)

ADD 0x2208 Addition of numerical data

ADDP 0x2A08 Addition of numerical data with rising edge polling (impulse)

DADD 0x3208 Addition of numerical data, 32-bit instruction

DADDP 0x3A08 Addition of numerical data, 32-bit instruction with rising edge polling (im-

pulse)

SUB 0x2228 Subtraction of numerical data

SUBP 0x2A28 Subtraction of numerical data with rising edge polling (impulse)

DSUB 0x3228 Subtraction of numerical data, 32-bit instruction

DSUBP 0x3A28 Subtraction of numerical data, 32-bit instruction with rising edge polling

(impulse)

MUL 0x2248 Multiplication of numerical data

MULP 0x2A48 Multiplication of numerical data with rising edge polling (impulse)

DMUL 0x3248 Multiplication of numerical data, 32-bit instruction

DMULP 0x3A48 Multiplication of numerical data, 32-bit instruction with rising edge polling

(impulse)

DIV 0x2268 Division of numerical data

DIVP 0x2A68 Division of numerical data with rising edge polling (impulse)

139

DDIV 0x3268 Division of numerical data, 32-bit instruction

DDIVP 0x3A68 Division of numerical data, 32-bit instruction with rising edge polling (im-

pulse)

MOD 0x22E8 Remainder of the division

MODP 0x2AE8 Remainder of the division with rising edge polling (impulse)

DMOD 0x32E8 Remainder of the division, 32-bit instruction

DMODP 0x3AE8 Remainder of the division, 32-bit instruction with rising edge polling (im-

pulse)

INC 0x2037 Increment numerical data (increase by 1)

INCP 0x2837 Increment numerical data (increase by 1) with rising edge polling (im-

pulse)

DINC 0x3037 Increment numerical data (increase by 1), 32-bit instruction

DINCP 0x3837 Increment numerical data (increase by 1), 32-bit instruction with rising

edge polling (impulse)

DEC 0x2017 Decrement numerical data (decrease by 1)

DECP 0x2817 Decrement numerical data (decrease by 1) with rising edge polling (im-

pulse)

DDEC 0x3017 Decrement numerical data (decrease by 1), 32-bit instruction

DDECP 0x3817 Decrement numerical data (decrease by 1), 32-bit instruction with rising

edge polling (impulse)

WAND 0x2288 Logical multiplication of numerical data (operation "AND")

WANDP 0x2A88 Logical multiplication of numerical data (operation "AND") with rising

edge polling (impulse)

DAND 0x3288 Logical multiplication of numerical data (operation "AND"), 32-bit in-

struction

DANDP 0x3A88 Logical multiplication of numerical data (operation "AND"), 32-bit in-

struction with rising edge polling (impulse)

WOR 0x22A8 Logical addition of numerical data (OR operation)

WORP 0x2AA8 Logical addition of numerical data (OR operation) with rising edge polling

(impulse)

DOR 0x32A8 Logical addition of numerical data (OR operation), 32-bit instruction

DORP 0x3AA8 Logical addition of numerical data (OR operation), 32-bit instruction with

rising edge polling (impulse)

WXOR 0x22C8 Logical operation "exclusive OR"

SMSD-1.5Mus

user manual

140

WXORP 0x2AC8 Logical operation "exclusive OR" with rising edge polling (impulse)

DXOR 0x32C8 Logical operation "exclusive OR", 32-bit instruction

DXORP 0x3AC8 Logical operation "exclusive OR", 32-bit instruction with rising edge poll-

ing (impulse)

NEG 0x2209 Logical negation

NEGP 0x2A09 Logical negation with rising edge polling (impulse)

DNEG 0x3209 Logical negation, 32-bit instruction

DNEGP 0x3A09 Logical negation, 32-bit instruction with rising edge polling (impulse)

ABS 0x2229 Absolute value

ABSP 0x2A29 Absolute value with rising edge polling (impulse)

DABS 0x3229 Absolute value, 32-bit instruction

DABSP 0x3A29 Absolute value, 32-bit instruction with rising edge polling (impulse)

SQR 0x2215 Square root calculation

SQRP 0x2A15 Square root calculation with rising edge polling (impulse)

DSQR 0x3215 Square root calculation, 32-bit instruction

DSQRP 0x3A15 Square root calculation, 32-bit instruction with rising edge polling (im-

pulse)

POW 0x2216 Raising to a power

POWP 0x2A16 Raising to a power with rising edge polling (impulse)

DPOW 0x3216 Raising to a power, 32-bit instruction

DPOWP 0x3A16 Raising to a power, 32-bit instruction with rising edge polling (impulse)

Shift operations

ROR 0x220B Cycle shift to the right

RORP 0x2A0B Cycle shift to the right with rising edge polling (impulse)

DROR 0x320B Cycle shift to the right, 32-bit instruction

DRORP 0x3A0B Cycle shift to the right, 32-bit instruction with rising edge polling (im-

pulse)

ROL 0x222B Cycle shift to the left

ROLP 0x2A2B Cycle shift to the left with rising edge polling (impulse)

DROL 0x322B Cycle shift to the left, 32-bit instruction

DROLP 0x3A2B Cycle shift to the left, 32-bit instruction with rising edge polling (impulse)

141

Data processing

ZRST 0x2203 Group reset of operands in a given range

ZRSTP 0x2A03 Group reset of operands in a given range with rising edge polling (impulse)

DECO 0x2211 Decoder 8 : 256 bit

DECOP 0x2A11 Decoder 8 : 256 bit with rising edge polling (impulse)

ENCO 0x2212 Encoder 256 : 8 bit

ENCOP 0x2A12 Encoder 256 : 8 bit with rising edge polling (impulse)

SUM 0x2213 Sum of single bits in the register

SUMP 0x2A13 Sum of single bits in the register with rising edge polling (impulse)

DSUM 0x3213 Sum of single bits in the register, 32-bit instruction

DSUMP 0x3A13 Sum of single bits in the register, 32-bit instruction with rising edge polling

(impulse)

BON 0x2214 Check a bit state with setting an output

BONP 0x2A14 Check a bit state with setting an output with rising edge polling (impulse)

DBON 0x3214 Check a bit state with setting an output, 32-bit instruction

DBONP 0x3A14 Check a bit state with setting an output, 32-bit instruction with rising edge

polling (impulse)

FLT 0x220C Convert integer to floating point

FLTP 0x2A0C Convert integer to floating point with rising edge polling (impulse)

DFLT 0x320C Convert integer to floating point, 32-bit instruction

DFLTP 0x3A0C Convert integer to floating point, 32-bit instruction with rising edge polling

(impulse)

Floating point operations

DECMP 0x220F Comparison of floating point numbers

DECMPP 0x2A0F Comparison of floating point numbers with rising edge polling (impulse)

DEZCP 0x2210 Zone floating point comparison

DEZCPP 0x2A10 Zone floating point comparison with rising edge polling (impulse)

DEADD 0x2217 Addition of floating point numbers

DEADDP 0x2A17 Addition of floating point numbers with rising edge polling (impulse)

DESUB 0x2237 Subtraction of floating point numbers

DESUBP 0x2A37 Subtraction of floating point numbers with rising edge polling (impulse)

SMSD-1.5Mus

user manual

142

DEMUL 0x2257 Multiplication of floating point numbers

DEMULP 0x2A57 Multiplication of floating point numbers with rising edge polling (impulse)

DEDIV 0x2277 Floating point numbers division

DEDIVP 0x2A77 Floating point numbers division with rising edge polling (impulse)

DESQR 0x2218 Square root in floating point format

DESQRP 0x2A18 Square root in floating point format with rising edge polling (impulse)

DEPOW 0x2297 Raising to a power in floating point format

DEPOWP 0x2A97 Raising to a power in floating point format with rising edge polling (im-

pulse)

INT 0x220D Converting a floating point number to an integer

INTP 0x2A0D Converting a floating point number to an integer with rising edge polling

(impulse)

DINT 0x320D Converting a floating point number to an integer, 32-bit instruction

DINTP 0x3A0D Converting a floating point number to an integer, 32-bit instruction with

rising edge polling (impulse)

Time and PWM

TRD 0x2219 Reading the current value of the real-time clock

TRDP 0x2A19 Reading the current value of the real-time clock with rising edge polling

(impulse)

TWR 0x221A Changing the value of a real-time clock

TWRP 0x2A1A Changing the value of a real-time clock with rising edge polling (impulse)

PWM 0x220E Pulse width-modulation (PWM) output

Date

DRD 0x2239 Reading the current date value

DRDP 0x2A39 Reading the current date value with rising edge polling (impulse)

DWR 0x223A Change the date value

DWRP 0x2A3A Change the date value with rising edge polling (impulse)

Contact type logical operations

LD& 0x4204 Contact is closed if S1 & S2 � 0

DLD& 0x5204 Contact is closed if S1 & S2 � 0, 32-bit instruction

143

LD| 0x4224 Contact is closed if S1 | S2 � 0

DLD| 0x5224 Contact is closed if S1 | S2 � 0, 32-bit instruction

LD^ 0x4244 Contact is closed if S1 ^ S2 � 0

DLD^ 0x5244 Contact is closed if S1 ^ S2 � 0, 32-bit instruction

AND& 0x4205 Serial contact closed if S1 & S2 � 0

DAND& 0x5205 Serial contact closed if S1 & S2 � 0, 32-bit instruction

AND| 0x4225 Serial contact closed if S1 | S2 � 0

DAND| 0x5225 Serial contact closed if S1 | S2 � 0, 32-bit instruction

AND^ 0x4245 Serial contact closed if S1 ^ S2 � 0

DAND^ 0x5245 Serial contact closed if S1 ^ S2 � 0, 32-bit instruction

OR& 0x4206 Parallel contact closed if S1 & S2 � 0

DOR& 0x5206 Parallel contact closed if S1 & S2 � 0, 32-bit instruction

OR| 0x4226 Parallel contact closed if S1 | S2 � 0

DOR| 0x5226 Parallel contact closed if S1 | S2 � 0, 32-bit instruction

OR^ 0x4246 Parallel contact closed if S1 ^ S2 � 0

DOR^ 0x5246 Parallel contact closed if S1 ^ S2 � 0, 32-bit instruction

Contact type comparison operations

LD= 0x4264 Contact is closed if S1 = S2

DLD= 0x5264 Contact is closed if S1 = S2, 32-bit instruction

LD> 0x4284 Contact is closed if S1 > S2

DLD> 0x5284 Contact is closed if S1 > S2, 32-bit instruction

LD< 0x42A4 Contact is closed if S1 < S2

DLD< 0x52A4 Contact is closed if S1 < S2, 32-bit instruction

LD<> 0x42C4 Contact is closed if S1 � S2

DLD<> 0x52C4 Contact is closed if S1 � S2, 32-bit instruction

LD<= 0x42E4 Contact is closed if S1 � S2

DLD<= 0x52E4 Contact is closed if S1 � S2, 32-bit instruction

LD>= 0x4304 Contact is closed if S1 � S2

DLD>= 0x5304 Contact is closed if S1 � S2, 32-bit instruction

AND= 0x4265 Serial contact closed if S1 = S2

DAND= 0x5265 Serial contact closed if S1 = S2, 32-bit instruction

SMSD-1.5Mus

user manual

144

AND> 0x4285 Serial contact closed if S1 > S2

DAND> 0x5285 Serial contact closed if S1 > S2, 32-bit instruction

AND< 0x42A5 Serial contact closed if S1 < S2

DAND< 0x52A5 Serial contact closed if S1 < S2, 32-bit instruction

AND<> 0x42C5 Serial contact closed if S1 � S2

DAND<> 0x52C5 Serial contact closed if S1 � S2, 32-bit instruction

AND<= 0x42E5 Serial contact closed if S1 � S2

DAND<= 0x52E5 Serial contact closed if S1 � S2, 32-bit instruction

AND>= 0x4305 Serial contact closed if S1 � S2

DAND>= 0x5305 Serial contact closed if S1 � S2, 32-bit instruction

OR= 0x4266 Parallel contact closed if S1 = S2

DOR= 0x5266 Parallel contact closed if S1 = S2, 32-bit instruction

OR> 0x4286 Parallel contact closed if S1 > S2

DOR> 0x5286 Parallel contact closed if S1 > S2, 32-bit instruction

OR< 0x42A6 Parallel contact closed if S1 < S2

DOR< 0x52A6 Parallel contact closed if Parallel contact closed if S1 < S2, 32-bit instruc-

tion

OR<> 0x42C6 Parallel contact closed if S1 � S2

DOR<> 0x52C6 Parallel contact closed if S1 � S2, 32-bit instruction

OR<= 0x42E6 Parallel contact closed if S1 � S2

DOR<= 0x52E6 Parallel contact closed if S1 � S2, 32-bit instruction

OR>= 0x4306 Parallel contact closed if S1 � S2

DOR>= 0x5306 Parallel contact closed if S1 � S2, 32-bit instruction

Stepper motor control

SPIN 0x2207 Start preset movement

SPINP 0x2A07 Start preset movement with rising edge polling (impulse)

TORQUE 0x2227 Apply the set currents to the motor

TORQUEP 0x2A27 Apply the set currents to the motor with rising edge polling (impulse)

HSTOP 0x2247 Switch to hold mode immediately

HSTOPP 0x2A47 Switch to hold mode immediately with rising edge polling (impulse)

145

HHIZ 0x2267 Deenergize motor phases immediately (the shaft rotates freely)

HHIZP 0x2A67 Deenergize motor phases immediately (the shaft rotates freely) with rising

edge polling (impulse)

SSTOP 0x2287 Decelerate until full stop and switch to hold mode

SSTOPP 0x2A87 Decelerate until full stop and switch to hold mode with rising edge polling

(impulse)

SHIZ 0x22A7 Decelerate until full stop and deenergize motor phases (the shaft rotates

freely)

SHIZP 0x2AA7 Decelerate until full stop and deenergize motor phases (the shaft rotates

freely) with rising edge polling (impulse)

SMSD-1.5Mus

user manual

146

Appendix C. Examples of user programs

Example 1. Usage of RUN command

LDP X0 ;catch the front of the pulse at the input X0 (button)

DMOV K8 D359 ;set minimum speed 8 pps

DMOV K120000 D357 ;set maximum speed 120000 pps

FMOV K30000 D361 K2 ;set acceleration and deceleration 30000 pps
2

MOV K3 D366 ;microstepping 1/8 (refer to the description of the instruc-

tion SPIN)

MOV K1 D374 ;direction ± forward

DMOV K6000 D377 ;set fullstep speed 6000 pps/sec

MOV K1 D379 ;enable to turn to the fullstep mode when reach fullstep

speed

MOV K0 D376 ;command RUN

FMOV K1500 D367 K2 ;acceleration and deceleration currents 1500 mA

MOV K1200 D369 ;constant speed current 1200 mA

MOV K600 D370 ;holding current 600 mA

TORQUE ;apply current values

FMOV K0 D380 K3 ;no error response, errors reset, use

;MIN_SPEED

SPIN ;start motion

LDP X1 ;catch the front of the pulse at the input X1 (button)

SSTOP ;stop according to the preset DEC and turn to the holding

mode

LDP X2 ;catch the front of the pulse at the input X2 (button)

SHIZ ;stop according to the preset DEC and turn to the HiZ

mode

LDP X3 ;catch the front of the pulse at the input X3 (button)

HSTOP ;immediately turn to the holding mode

LDP X4 ;catch the front of the pulse at the input X4 (button)

HHIZ ;immediately turn to the HiZ mode

END ;end of the program

Example 2. Usage of commands MOVE, GOTO, GOHOME

LD M0 ;to skip the initialization section, check the condition M0

CJ P1 ;and jump to the line marked P1

LDP M108 ;M108 leading edge after initialization only

DMOV K120000 D357 ;set the maximum speed 120000 pps

FMOV K30000 D361 K2 ;set the acceleration and deceleration 30000pps
2

MOV K3 D366 ;microstepping 1/8 (refer to the description of the instruc-

tion SPIN)

DMOV K6000 D377 ;set fullstep speed 6000 pps/sec

MOV K1 D379 ;enable to turn to the fullstep mode when reach fullstep

speed

FMOV K1500 D367 K2 ;acceleration and deceleration currents 1500 mA

MOV K1200 D369 ;constant speed current 1200 mA

MOV K600 D370 ;holding current 600 mA

147

TORQUE ;apply current values

FMOV K0 D380 K2 ;no error response, errors reset

MOV K1 D382 ;use automatic calculation of start and final speed

DMOV K0 D363 ;zero the current position

SET M0 ;turn on the driver initialization bypass condition

P 1 ;transition mark

LDP X0 ;catch the front of the pulse at the input X0 (button)

AND& D371 K3 ;only if the motor is in the HiZ or Hold mode

DMOV K10000 D372 ;move 10000 microsteps

MOV K1 D374 ;in the forward direction

MOV K1 D376 ;is performed by the MOVE command

SPIN ;start motion

LDP X1 ;catch the front of the pulse at the input X1 (button)

AND& D371 K3 ;only if the motor is in the HiZ or Hold mode

DMOV K100000 D372 ;moving to a position with coordinate 100000

MOV K2 D376 ;is performed by the GOTO command

SPIN ;start motion

LDP X2 ;catch the front of the pulse at the input X2 (button)

AND& D371 K3 ;only if the motor is in the HiZ or Hold mode

MOV K0 D374 ;movement to the "0" position in the backward direction

MOV K4 D376 ;is performed by the GOHOME command

SPIN ;start motion

LDP X3 ;catch the front of the pulse at the input X3 (button)

SSTOP ;stop according to the preset DEC and turn to the holding

mode

LDP X4 ;catch the front of the pulse at the input X4 (button)

SHIZ ;stop according to the preset DEC and turn to the HiZ

mode

LDP X5 ;catch the front of the pulse at the input X5 (button)

HSTOP ;immediately turn to the holding mode

LDP X6 ;catch the front of the pulse at the input X6 (button)

HHIZ ;immediately turn to the HiZ mode

END ;end of the program

SMSD-1.5Mus

user manual

148

Example 3. Usage of commands GOUNTIL_SLOWSTOP and RELEASE

Using the GOUNTIL_SLOWSTOP and RELEASE commands as an example of moving to the

origin position along the positive limit switch (see Fig. 36).

Positive limit switch

Fig. 36 ± Move to the origin

LD M0 ;to skip the initialization section, check the condition M0

CJ P1 ;and jump to the line marked P1

LDP M108 ;M108 leading edge after initialization only

FMOV K30000 D361 K2 ;set the acceleration and deceleration 30000pps
2

MOV K3 D366 ;microstepping 1/8 (refer to the description of the instruc-

tion SPIN)

DMOV K6000 D377 ;set fullstep speed 6000 pps/sec

MOV K1 D379 ;enable to turn to the fullstep mode when reach fullstep

speed

FMOV K1500 D367 K2 ;acceleration and deceleration currents 1500 mA

MOV K1200 D369 ;constant speed current 1200 mA

MOV K600 D370 ;holding current 600 mA

TORQUE ;apply current values

FMOV K0 D380 K2 ;no error response, errors reset

MOV K1 D382 ;use automatic calculation of start and final speed

MOV K7 D375 ;the switch limit is connected to the input IN7

SET M0 ;turn on the driver initialization bypass condition

P 1 ;transition mark

LDP X0 ;catch the front of the pulse at the input X0 (button)

AND& D371 K3 ;only if the motor is in the HiZ or Hold mode

DMOV K20000 D357 ;set the maximum speed 20000 pps

MOV K5 D376 ;command GOUNTIL_SLOWSTOP

MOV K1 D374 ;direction ± forward

SPIN ;start motion

SET M1 ;set the flag to start the first stage

LD M1 ;wait when the limit switch is activated at the first stage

AND& D371 K2 ;and the motor stops

RST M1 ;reset the flag of the first stage

DMOV K1000 D357 ;decrease speed

MOV K9 D376 ;movement in the opposite direction until the limit switch

MOV K0 D374 ;opens

SPIN ;start motion

149

SET M2 ;and move on to the second stage

LD M2 ;waiting for the limit switch to open and the motor to stop

AND& D371 K2 ;at the second stage

RST M2 ;reset the flag of the second stage

DMOV K0 D363 ;and reset the current position, it becomes the origin now

LDP X1 ;catch the front of the pulse at the input X1 (button)

SSTOP ;stop according to the preset DEC and turn to the holding

mode

LDP X2 ;catch the front of the pulse at the input X2 (button)

SHIZ ;stop according to the preset DEC and turn to the HiZ

mode

LDP X3 ;catch the front of the pulse at the input X3 (button)

HSTOP ;immediately turn to the holding mode

LDP X4 ;catch the front of the pulse at the input X4 (button)

HHIZ ;immediately turn to the HiZ mode

FEND ;end of the main program

I 1007 ;interruption handler for the input IN7 (required for

GOUNTIL _... and ... RELEASE commands, may be left

empty)

IRET ;return to the main program

END ;end of the program

SMSD-1.5Mus

user manual

150

$SSHQGL[�'��&RGH�RI�WKH�VHUYLFH�SURJUDP�³6WHSSHU�0RWRU�6SHHG�

&RQWURO´

LD M0 ;initialization bypass condition

CJ P1
LDP M108 ;initialization part

MPS
LD= D320 K6 ; D320 stores microstepping value

OR> D320 K8
OR< D320 K0
ANB
MOV K0 D320
MRD
MOV D320 D366
MOV D320 D0 ;D0 ±the service register for visualization of microstepping

MOV K0 D2
MRD
AND> D0 K6 ;DV�WKH�FRQWUROOHU�GRHVQ¶W�VXSSRUW�PLFURVWepping 1/64,

DEC D0 ;skip this value

MRD
DECO D0 Y0 K3 ;visualization of microstepping on the outputs scale

MOV K0 D379 ;initial setup of the stepper motor driver

MOV K0 D376
MOV K250 D359
MOV K0 D380
MRD
LD< D321 K0 ;D321 stores control method data:

OR> D321 K2 ;potentiometer/buttons/encoder

ANB
MOV K0 D321
MRD
SET M0
MOV D321 Y10 ;visualization of the control method

MRD
AND<> A0 D321
MPS
AND= D321 K2 ;if an encoder is selected, then the peripherals

MOV K12 D355 ;of the controller must be set accordingly

MOV D321 A0
RST M108 ;and restart the program

MPP
AND<> D321 K2
MOV K0 D355
MOV D321 A0
RST M108
MRD
MUL D353 K10 D4 ;data of the potentiometer 1

151

DIV D4 K27 D4
FMOV D4 D367 K3 ;set acceleration, deceleration and constant speed current

DIV D4 K2 D370 ;holding current ± 50% of work current

TORQUE
MRD
AND X7
MOV K1 D374
MRD
ANI X7
MOV K0 D374
MRD
DLD< D322 K250 ;D322, D323 speed set by buttons

DOR> D322 K120000
ANB
DMOV K250 D322
MRD
DMOV D322 D5
MRD
DLD< D324 K250 ;D324, D325 speed set by the encoder

DOR> D324 K120000
ANB
DMOV K250 D324
MRD
DMOV D324 D15
MRD

DMOV K0 C64
DMOV C64 D7
MPP
ANI X4
HSTOP
LD X2
OUT M102
EI ;enable interruptions, the end of the initialization block

P 1
LD X4
AND& D371 HFE
HHIZ
LDI X4
MPS
AND M102
AND X3
AND& D371 K3
CALL P10A0
SPIN
MPP
LDI X3
ANB
AND& D371 HFD
HSTOP

SMSD-1.5Mus

user manual

152

LDI M102
AND X3
ANI X4
AND& D371 H15
SSTOP
LD M109 ;if there was an error and the ERR indicator was on -

TMR T0 K10 ;start the timer to turn it off

AND T0
RST M109
LD<> A0 K1
CJ P19
LD= A0 K1
MPS
ANDP X0
DADD D5 D354 D5
MPS
DAND> D5 K120000
DMOV K120000 D5
MPP
DMOV D5 D322
MPP
ANDP X1
DSUB D5 D354 D5
MPS
DAND< D5 K250
DMOV K250 D5
MPP
DMOV D5 D322
P 19
LD<> A0 K2
CJ P20
LD= A0 K2
MPS
DSUB C64 D7 D9
DADD D7 D9 D7
DCMP D9 K0 M1
MRD
AND M1
MOV D354 D1
DMUL D9 D1 D11
DADD D11 D15 D15
MPP
AND M3
MOV D354 D1
ABS D9
DMUL D9 D1 D11
DADD D15 D11 D15
LD M1

153

OR M3
MPS
DAND< D15 K250
DMOV K250 D15
MRD
DAND> D15 K120000
DMOV K120000 D15
MPP
DMOV D15 D324
P 20
FEND ;end of the main program

P 10 ;subprogram of setting the speed by the potentiometer

LD M108
MOV K0 D2
MOV D354 D1
MPS
AND= D1 K0
MOV K1 D1
MRD
DMUL D1 K29 D13
MRD
DAND< D13 K250
DMOV K250 D13
MPP
DMOV D13 D357
CALL P0
SRET
P 11 ; subprogram of setting the speed by buttons

LD M108
DMOV D322 D357
CALL P0
SRET
P 12 ; subprogram of setting the speed by the encoder

LD M108
DMOV D324 D357
CALL P0
SRET
P 0 ;subprogram of updating acceleration and deceleration

LD M108
MOV D352 D3
MPS
AND= D3 K0
MOV K1 D3
MPP
MUL D3 K14 D361
MOV D361 D362
SRET
I 50 ;500 ms interruption to update of the currents

LD M108

SMSD-1.5Mus

user manual

154

MUL D353 K10 D4
DIV D4 K27 D4
FMOV D4 D367 K3
DIV D4 K2 D370
TORQUE
IRET
I 10 ;interruption with a period of 100 ms to update the speed

LDI X6
AND X2
AND M102
AND X3
ANI X4
BON D371 M60 K6
ANI M60
CALL P10A0
SPIN
IRET
I 1005 ;interruption from the input IN5

LD M105
INC D320
MPS
AND= D320 K6
INC D320
MRD
AND= D320 K9
MOV K0 D320
INC D321
MPS
AND= D321 K3
MOV K0 D321
MRD
MOV D321 Y10
MOV D321 A0
MRD
AND= D321 K2
MOV K12 D355
RST M108
MPP
AND<> D321 K2
MOV K0 D355
RST M108
MRD
MOV D320 D0
MOV D320 D366
MRD
AND> D0 K6
DEC D0
MPP

155

DECO D0 Y0 K3
IRET
I 1004 ;interruption from the input IN4

LD M104
HHIZ
LDI M104
MPS
AND X2
AND X3
AND& D371 K3
CALL P10A0
SPIN
MPP
LDI X2
ORI X3
ANB
HSTOP
IRET
I 1003 ;interruption from the input IN3

LDI M103
ANI X4
HSTOP
LD M103
AND X2
ANI X4
AND& D371 K3
CALL P10A0
SPIN
IRET
I 1002 ;interruption from the input IN2

LDI M102
AND X3
ANI X4
SSTOP
LD M102
AND X3
ANI X4
AND& D371 K3
CALL P10A0
SPIN
IRET
I 1007 ;interruption from the input IN7

LD& D371 H1C
MPS
AND M107
AND= D374 K0
SSTOP
MPP
ANI M107

SMSD-1.5Mus

user manual

156

AND= D374 K1
SSTOP
LD M107
MOV K1 D374
AND X2
AND X3
ANI X4
AND& D371 K3
CALL P10A0
SPIN
LDI M107
MOV K0 D374
AND X2
AND X3
ANI X4
AND& D371 K3
CALL P10A0
SPIN
IRET
I 2000 ;interruption when a driver error occurs

LD& D381 K1
MOV K0 D381
SET M109
MOV K0 T0
IRET
END

SMSD-1.5Mus

user manual

160

Appendix F. Debugging the user program

Debug mode allows the user to:

x set four breakpoints for the execution of the user program (breakpoint),
x view and edit operands,
x pause and resume the execution of the user program.

Below is the list of the debugger registers:

Address Type Size Description

Control of user program executing

0x6100 Input
Registers

16-bit Current index (command line number) of the user program

0x6100 Coils - Setting the object turns on the debugging mode, resetting ± turns off.
Also debugging mode is turned off when the RUN/STOP toggle
switch state is turned to the state STOP.

0x6100 Discrete
Inputs

- Indication of the debugging mode.
Set ± the controller is in the debugging mode
Reset - the controller is not in the debugging mode

0x6101 Coils - Setting the object suspends user program executing.
Setting the register will suspend execution of the user program at the
current index. Reset - resumes executing.

0x6101 Discrete
Inputs

- Indication of suspending a user program.
Set ± the user program is suspended
Reset - the user program runs

0x6102 Coils - Setting the object turns on the single-step debugging.
When attempting to resume the user program by resetting 6101h
Coils, the execution will be automatically aborted at the next index.

Breakpoints

In addition to a single-step debugging, when user program executing suspends

at every next command line, it is possible to specify four breakpoints at which

program executing will be suspended.

Breakpoint 1

0x6200 Coils - Setting the object turns on the breakpoint 1. User program executing
will be suspended at index, which is specified in the Holding Regis-
ters 6200h.

0x6200 Holding
Registers

16-bit Index (number of command line) of the breakpoint 1.

161

Address Type Size Description

Breakpoint 2

0x6201 Coils - Setting the object turns on the breakpoint 2. User program executing
will be suspended at index, which is specified in the Holding Regis-
ters 6201h.

0x6201 Holding
Registers

16-bit Index (number of command line) of the breakpoint 2.

Breakpoint 3

0x6202 Coils - Setting the object turns on the breakpoint 3. User program executing
will be suspended at index, which is specified in the Holding Regis-
ters 6202h.

0x6202 Holding
Registers

16-bit Index (number of command line) of the breakpoint 3.

Breakpoint 4

0x6203 Coils - Setting the object turns on the breakpoint 4. User program executing
will be suspended at index, which is specified in the Holding Regis-
ters 6203h.

0x6203 Holdings
Registers

16-bit Index (number of command line) of the breakpoint 4.

Monitoring and editing operands

0x6000 Coils - Request to read data by setting the register. The reset occurs automat-
ically. The response to the request indicates the readiness of the re-
quested data about the operand.

0x6001 Coils - Request to write data by setting the register. The reset occurs auto-
matically. The response to the request indicates that data has been
written to the operand.

0x6002 Coils - Read/write register data size
Reset ± 16 bit
Set ± 32-bit.

0x6003 Coils - Setting the register cancels editing of operand value when coils 6001h
is set ± for opeUDQGV�³&´�DQG�³7´�

0x6004 Coils - Setting the register cancels editing of operand signal when coils
6001h is set ± IRU�RSHUDQGV�³&´�DQG�³7´�

0x6000 Discrete
Inputs

- The object is set when an operand read or write operation fails. Reset
is performed automatically when a read or write operation is request-
ed.

Operand parameterization

0x6000 Holding
Registers

16-bit Operand type. X (0x58), Y (0x59), M (0x4D), T (0x54), C (0x43), A
(0x41), B (0x42), D (0x44).

0x6001 Holding
Registers

16-bit Operand index.

SMSD-1.5Mus

user manual

162

Address Type Size Description

Operands monitoring

0x6002 Input
Registers

32-bit This register contains the value of the operand (if available) parame-
terized for reading. The size is set by Coils 6002h.

0x6004 Input
Registers

16-bit This register contains the signal of the operand (if available) parame-
terized for reading.
Possible values:
0x00 ± low level,
0x03 ± high level, with a leading edge
0x02 ± high level,
0x04 ± low level, with a trailing edge.

Operands editing

0x6002 Holding
Registers

32-bit This register contains the value of the operand (if available) parame-
terized for writing. The size is set by Coils 6002h.

0x6004 Holding
Registers

16-bit This register contains the signal of the operand (if available) parame-
terized for writing.
Possible values:
0x00 ± low level,
0x03 ± high level, with a leading edge
0x02 ± high level,
0x04 ± low level, with a trailing edge.

Last modified: 27.04.2023

